摘要:
The present invention relates to a system for cooling a high power fuel injector of a dual fuel injector wherein the system comprises a first fuel supply circuit having a first conduit connecting a fuel feed supply and the high power fuel injector, the first conduit having a terminal end adjacent to a distal end of the high power fuel injector, and a second conduit connecting the terminal end of the first conduit to the low power fuel injector such that all of the fuel supplied to the low power injector first passes through the high power fuel injector. The system also has a second fuel supply circuit, separate from the first fuel supply circuit, which comprises a third conduit connecting the fuel feed supply and the fuel injection orifices of the high power fuel injector so as to supply fuel to the fuel injection orifices.
摘要:
The present invention relates to a method and apparatus for supplying fuel to and cooling a fuel injector of a gas turbine engine having a dual head combustion chamber. The method comprises the steps of supplying a total fuel flow to the fuel injector such that at least a portion of the total fuel flow circulates through the high power injector nozzle during all operational modes of the gas turbine engine, including those modes in which the high power injector is not supplying fuel to the combustion chamber, and evacuating unused fuel from the high power injector. The apparatus includes a fuel supply conduit connected to the high power injector to supply at least a portion of the total fuel flow supplied to the fuel injector to the high power injector during all operational modes of the gas turbine engine; a fuel control valve to control the amount of fuel flowing through the fuel injector orifices; and a fuel evacuation conduit connected to the high power injector so as to evacuate unused fuel from the high power injector.
摘要:
A separator for an annular gas turbine engine combustion chamber is disclosed having a plurality of separator segments arranged in a generally annular configuration to form an annular separator extending from an upstream end wall of a combustion chamber into the combustion chamber so as to separate first and second combustion zones within the combustion chamber. Each of the separator segments has a hollow interior defined by a front wall, an outer wall, an inner wall which has at least a portion tapering or converging towards the outer wall in a direction extending away from the front wall, and first and second sides. The sides define an array of holes communicating with the hollow interior, the positioning of the array of holes on a first sides being different from that of the array of holes on the second sides such that the axes of the holes are out of alignment with each other. The first sides of one separator segment is positioned adjacent to, but spaced apart from a second sides of an adjacent separator segment. Since the array of holes on the first sides is out of alignment with the array of holes on the second sides, pressurized gas within the interior of the hollow segment will pass through the holes in the first and second sides and will impinge upon the adjacent sides so as to cool both the adjacent sides and the sides through which the gas passes.
摘要:
A wall structure for a gas turbine engine structure, such as a combustion chamber or an afterburner duct is disclosed having a plurality of cooling orifices formed through the wall located in a plurality of odd and even transverse rows, each row having a plurality of cooling orifices located in a plane extending substantially perpendicular to a longitudinal axis of symmetry with the cooling orifices of each odd and even row being circumferentially offset from the cooling orifices of the adjacent upstream corresponding odd and even row. The cooling orifices have a common diameter D and are circumferentially offset a distance d such that distance d is between 0.5 D and D. The axes of the orifices in the odd numbered rows lie on a first main line extending obliquely to the longitudinal axis of symmetry and to the oxidizer air flow, and the axes of orifices on the even numbered rows lie on a second main line, also extending obliquely to the longitudinal axis of symmetry and to the oxidizer air flow. The axes of the orifices in the adjacent rows lie on secondary lines which extend obliquely to the first and second main lines and also to the longitudinal axis of symmetry. Any weld joints necessary to form the annular combustion chamber or afterburner duct from a plurality of wall segments extend parallel to the secondary lines and may be spaced equidistantly from adjacent secondary lines.