摘要:
Currently, routing algorithms compute all the available paths in the network, from a source node to a destination node before selecting the optimal route. The route computation is often time and resource consuming. Some paths are not acceptable due to the particular geographical configuration of the network. In the real world, large transport networks are not fully meshed. The present invention is based on the observation that networks are usually built around a hierarchical structure. A set of nodes, interconnected by high throughput lines, are used to build a `Backbone` (401) with a high degree of meshing to allow the redundancy and reliability required by the user. The other nodes or `local` nodes (404) are attached to one or several backbone nodes. It is the network designer responsibility, at the configuration time to define for each node what is its attribution: backbone (402) or local node (404). The list of the node attributions appears in the topology table (306) and is updated each time a node is added to or dropped from the network. The routing algorithm can take advantage of the particular network topology to drastically reduce the complexity of paths computation. For a given connection, only a limited number of nodes are eligible and are taken in account by the algorithm in the optimal route search. The object of the invention is to split the network into backbone and local nodes to speed up the path selection.