Speech recognition using unequally-weighted subvector error measures for determining a codebook vector index to represent plural speech parameters
    1.
    发明授权
    Speech recognition using unequally-weighted subvector error measures for determining a codebook vector index to represent plural speech parameters 有权
    使用不等权重子向量误差测量的语音识别,用于确定代码多个语音参数的码本矢量索引

    公开(公告)号:US06389389B1

    公开(公告)日:2002-05-14

    申请号:US09417371

    申请日:1999-10-13

    IPC分类号: G10L1508

    CPC分类号: G10L15/02 G10L15/10

    摘要: Quantization unit (108) comprises evaluator (120) and comparator (122) in signal processing for identifying an utterance in system (100). The evaluator (120) weights a first intermediate result of an operation on a first set of a plurality of speech parameters (104) differently than a second intermediate result of an operation on a second set of the plurality of speech parameters (104) in a weighted representation of the plurality of speech parameters (104). The comparator (122) employs the weighted representation of the plurality of speech parameters (104) to determine a vector index to represent the plurality of speech parameters (104). The quantization unit (108), in one example, can employ split vector quantization in conjunction with the weighted representation to determine a vector index to represent the plurality of speech parameters (104).

    摘要翻译: 量化单元(108)包括用于识别系统(100)中的话语的信号处理中的评估器(120)和比较器(122)。 评估器(120)对第一组多个语音参数(104)的操作的第一中间结果与在第一组多个语音参数(104)中的操作的第二中间结果不同地加权 多个语音参数(104)的加权表示。 比较器(122)使用多个语音参数(104)的加权表示来确定用于表示多个语音参数(104)的向量索引。 在一个示例中,量化单元(108)可以结合加权表示使用分割向量量化,以确定用于表示多个语音参数(104)的向量索引。

    Method of evaluating an utterance in a speech recognition system
    2.
    发明授权
    Method of evaluating an utterance in a speech recognition system 失效
    评价语音识别系统中话语的方法

    公开(公告)号:US06226612B1

    公开(公告)日:2001-05-01

    申请号:US09016214

    申请日:1998-01-30

    IPC分类号: G10L1514

    CPC分类号: G10L15/063 G10L2015/088

    摘要: The present invention provides a method of calculating, within the framework of a speaker dependent system, a standard filler, or garbage model, for the detection of out-of-vocabulary utterances. In particular, the method receives new training data in a speech recognition system (202); calculates statistical parameters for the new training data (204); calculates global statistical parameters based upon the statistical parameters for the new training data (206); and updates a garbage model based upon the global statistical parameters (208). This is carried out on-line while the user is enrolling the vocabulary. The garbage model described in this disclosure is preferably an average speaker model, representative of all the speech data enrolled by the user to date. Also, the garbage model is preferably obtained as a by-product of the vocabulary enrollment procedure and is similar in it characteristics and topology to all the other regular vocabulary HMMs.

    摘要翻译: 本发明提供了一种在扬声器依赖系统的框架内计算用于检测词汇外话语的标准填充或垃圾模型的方法。 具体地,该方法在语音识别系统(202)中接收新的训练数据; 计算新训练数据的统计参数(204); 基于新训练数据的统计参数计算全局统计参数(206); 并基于全局统计参数(208)来更新垃圾模型。 这是在用户注册词汇表的同时进行的。 本公开中描述的垃圾模型优选地是代表用户登记的所有语音数据的平均说话者模型。 此外,垃圾模型优选地作为词汇注册过程的副产品获得,并且其特征和拓扑与所有其他常规词汇HMM类似。