摘要:
Embodiments of the present invention provide hardware-friendly indexing of databases. In particular, forward and reverse indexing are utilized to allow for easy traversal of primary key to foreign key relationships. A novel structure known as a hit list also allows for easy scanning of various indexes in hardware. Group indexing is provided for flexible support of complex group key definition, such as for date range indexing and text indexing. A Replicated Reordered Column (RRC) may also be added to the group index to convert random I/O pattern into sequential I/O of only needed column elements.
摘要:
Embodiments of the present invention provide a hardware accelerator that assists a host database system in processing its queries. The hardware accelerator comprises special purpose processing elements that are capable of receiving database query/operation tasks in the form of machine code database instructions, execute them in hardware without software, and return the query/operation result back to the host system. For example, table and column descriptors are embedded in the machine code database instructions. For ease of installation, the hardware accelerators employ a standard interconnect, such as a PCle or HT interconnect. The processing elements implement a novel dataflow design and Inter Macro-Op Communication (IMC) data structures to execute the machine code database instructions. The hardware accelerator may also comprise a relatively large memory to enhance the hardware execution of the query/operation tasks requested. The hardware accelerator utilizes hardware-friendly memory addressing, which allows for arithmetic derivation of a physical address from a global database virtual address simply based on a row identifier. The hardware accelerator minimizes memory reads/writes by keeping most intermediate results flowing through IMCs in pipelined and parallel fashion. Furthermore, the hardware accelerator may employ task pipelining and pre-fetch pipelining to enhance its performance.
摘要:
Embodiments of the present invention provide a hardware accelerator that assists a host database system in processing its queries. The hardware accelerator comprises special purpose processing elements that are capable of receiving database query/operation tasks in the form of machine code database instructions, execute them in hardware without software, and return the query/operation result back to the host system. For example, table and column descriptors are embedded in the machine code database instructions. For ease of installation, the hardware accelerators employ a standard interconnect, such as a PCle or HT interconnect. The processing elements implement a novel dataflow design and Inter Macro-Op Communication (IMC) data structures to execute the machine code database instructions. The hardware accelerator may also comprise a relatively large memory to enhance the hardware execution of the query/operation tasks requested. The hardware accelerator utilizes hardware-friendly memory addressing, which allows for arithmetic derivation of a physical address from a global database virtual address simply based on a row identifier. The hardware accelerator minimizes memory reads/writes by keeping most intermediate results flowing through IMCs in pipelined and parallel fashion. Furthermore, the hardware accelerator may employ task pipelining and pre-fetch pipelining to enhance its performance.
摘要:
Embodiments of the present invention provide one or more hardware-friendly data structures that enable efficient hardware acceleration of database operations. In particular, the present invention employs a column-store format for the database. In the database, column-groups are stored with implicit row ids (RIDs) and a RID-to-primary key column having both column-store and row-store benefits via column hopping and a heap structure for adding new data. Fixed-width column compression allow for easy hardware database processing directly on the compressed data. A global database virtual address space is utilized that allows for arithmetic derivation of any physical address of the data regardless of its location. A word compression dictionary with token compare and sort index is also provided to allow for efficient hardware-based searching of text. A tuple reconstruction process is provided as well that allows hardware to reconstruct a row by stitching together data from multiple column groups.
摘要:
Embodiments of the present invention provide one or more hardware-friendly data structures that enable efficient hardware acceleration of database operations. In particular, the present invention employs a column-store format for the database. In the database, column-groups are stored with implicit row ids (RIDs) and a RID-to-primary key column having both column-store and row-store benefits via column hopping and a heap structure for adding new data. Fixed-width column compression allow for easy hardware database processing directly on the compressed data. A global database virtual address space is utilized that allows for arithmetic derivation of any physical address of the data regardless of its location. A word compression dictionary with token compare and sort index is also provided to allow for efficient hardware-based searching of text. A tuple reconstruction process is provided as well that allows hardware to reconstruct a row by stitching together data from multiple column groups.
摘要:
Embodiments of the present invention provide a hardware accelerator that assists a host database system in processing its queries. The hardware accelerator comprises special purpose processing elements that are capable of receiving database query/operation tasks in the form of machine code database instructions, execute them in hardware without software, and return the query/operation result back to the host system. For example, table and column descriptors are embedded in the machine code database instructions. For ease of installation, the hardware accelerators employ a standard interconnect, such as a PCIe or HT interconnect. The processing elements implement a novel dataflow design and Inter Macro-Op Communication (IMC) data structures to execute the machine code database instructions. The hardware accelerator may also comprise a relatively large memory to enhance the hardware execution of the query/operation tasks requested. The hardware accelerator utilizes hardware-friendly memory addressing, which allows for arithmetic derivation of a physical address from a global database virtual address simply based on a row identifier. The hardware accelerator minimizes memory reads/writes by keeping most intermediate results flowing through IMCs in pipelined and parallel fashion. Furthermore, the hardware accelerator may employ task pipelining and pre-fetch pipelining to enhance its performance.
摘要:
Embodiments of the present invention provide processing elements that are capable of performing high level database operations in hardware based on machine code instructions. These processing elements employ a dataflow architecture that operates on data in hardware without interruption or software. A scanning/indexing processing element may comprise logic that analyze database column groups stored in local memory, perform parallel field extraction and comparison, and generates a list of row pointers (row ids or RIDs) referencing those rows whose value(s) satisfy an applied predicate. The scanning/indexing processing may also be used to project database column groups, search and join index structures, and manipulate in-flight metadata flows, composing, merging, reducing, and modifying multi-dimensional lists of intermediate and final results. Furthermore, a scanning/indexing processing element may be used for joins with indexes, like a Group Index, which involves the association of each input tuple with potentially many related data components, in a one-to-many mapping. An XCAM processing element may comprise logic to perform associative database operations, like accumulation and aggregation, sieving, sorting and associative joins.
摘要:
Embodiments of the present invention provide one or more hardware-friendly data structures that enable efficient hardware acceleration of database operations. In particular, the present invention employs a column-store format for the database. In the database, column-groups are stored with implicit row ids (RIDs) and a RID-to-primary key column having both column-store and row-store benefits via column hopping and a heap structure for adding new data. Fixed-width column compression allow for easy hardware database processing directly on the compressed data. A global database virtual address space is utilized that allows for arithmetic derivation of any physical address of the data regardless of its location. A word compression dictionary with token compare and sort index is also provided to allow for efficient hardware-based searching of text. A tuple reconstruction process is provided as well that allows hardware to reconstruct a row by stitching together data from multiple column groups.
摘要:
Embodiments of the present invention provide one or more hardware-friendly data structures that enable efficient hardware acceleration of database operations. In particular, the present invention employs a column-store format for the database. In the database, column-groups are stored with implicit row ids (RIDs) and a RID-to-primary key column having both column-store and row-store benefits via column hopping and a heap structure for adding new data. Fixed-width column compression allow for easy hardware database processing directly on the compressed data. A global database virtual address space is utilized that allows for arithmetic derivation of any physical address of the data regardless of its location. A word compression dictionary with token compare and sort index is also provided to allow for efficient hardware-based searching of text. A tuple reconstruction process is provided as well that allows hardware to reconstruct a row by stitching together data from multiple column groups.
摘要:
Embodiments of the present invention provide a hardware accelerator that assists a host database system in processing its queries. The hardware accelerator comprises special purpose processing elements that are capable of receiving database query/operation tasks in the form of machine code database instructions, execute them in hardware without software, and return the query/operation result back to the host system. For example, table and column descriptors are embedded in the machine code database instructions. For ease of installation, the hardware accelerators employ a standard interconnect, such as a PCIe or HT interconnect. The processing elements implement a novel dataflow design and Inter Macro-Op Communication (IMC) data structures to execute the machine code database instructions. The hardware accelerator may also comprise a relatively large memory to enhance the hardware execution of the query/operation tasks requested. The hardware accelerator utilizes hardware-friendly memory addressing, which allows for arithmetic derivation of a physical address from a global database virtual address simply based on a row identifier. The hardware accelerator minimizes memory reads/writes by keeping most intermediate results flowing through IMCs in pipelined and parallel fashion. Furthermore, the hardware accelerator may employ task pipelining and pre-fetch pipelining to enhance its performance.