摘要:
A composition and method to mitigate plant autophagy and/or apoptosis of newly developing cells in plants grown under environmentally stressful growing conditions. Exogenous application of a cytokinin, preferably kinetin, to the foliage of plants has been discovered to overcome, or at least mitigate, autophagy when applied during or just prior to flowering. Several provided examples show that, in laboratory and field experiments, exogenous foliar application of cytokinin to the leaves and flowers of plants lessened cytokinin deficiencies in plant tissues grown in high temperatures, thereby mitigating autophagy and apoptosis and greatly enhancing seed/crop production. The application of low concentrations of potassium together with the cytokinin appears to provide a synergistic effect by amplifying the effect of the cytokinin to lessen autophagy and increase crop productivity.
摘要:
Plant growth enhancing mixture and method of selectively timing the application of same during the development of crop plants or other plants to positively augment cell number increase and cellular development of crop plants or other plants to enhance development and/or productivity of the economic portion of the crop plant or other plant. Application of the plant growth enhancing mixture at flowering enhances both weak flowers and normally strong flowers. The plant growth enhancing mixture and method of application have also been shown to impart varying disease resistance to the treated crop or other plants. The plant growth enhancing mixture and method of application also increases the depth and strength of rooting for greater access and transport of water and nutrients for growth and productivity of the crop plant.
摘要:
A composition and method to mitigate plant autophagy and/or apoptosis of newly developing cells in plants grown under environmentally stressful growing conditions, such as high temperature. Exogenous application of a cytokinin, preferably kinetin, to either the roots or the foliage (i.e., flowers and leaves) of plants has been discovered to overcome, or at least substantially mitigate, autophagy when applied during or just prior to flowering. Experimental results indicate that high temperature-induced autophagy, and subsequent new cell apoptosis, is the result of a deficiency of cytokinin in the plant tissues. The application of low concentrations of potassium together with the cytokinin appears to provide a synergistic effect by amplifying the effect of the cytokinin to lessen autophagy and increase crop productivity.
摘要:
In agriculture when temperature and moisture deviate from the norm two things happen, plant growth suffers and disease flourishes. The Stoller model for plant growth states that proper hormone balance is necessary for optimum growth and performance. When growth conditions deviate from the norm, hormone balance is altered and plant growth suffers. This invention presents evidence to support this model and explain the relationship between hormone levels and plant growth. A clear understanding of this relationship will facilitate crop treatments aimed to eliminate these problems. Although we cannot control the climate, we can control the damage caused by environmental stresses by manipulating the levels and/or ratio of plant hormones in the different plant tissues. By adjusting the levels and/or ratios of hormones, particularly auxin and cytokinins in the root tissue, we can assist the plant in overcoming or compensating for this environmental stress.
摘要:
The invention relates generally to a liquid solution formulation including gibberellic acid (“GA3”), gibberellin4 (“GA4”), gibberellin4/7 (“GA4/7”), or combinations thereof, and a low-volatile, organic solvent, and methods of their use. Specifically, the liquid solution formulations of the present invention are directed toward agricultural liquid solution formulations including at least one gibberellin and a low-volatile, organic solvent selected from polyethylene glycol, propylene glycol, and/or a non-polymeric glycol.
摘要:
A synergistic agricultural formula including at least one diacyl or diaryl urea, such as a N,N′-diformylurea, and at least one mixture of nutrients, such as a mixture of micronutrients and/or macronutrients. This synergistic agricultural formula gives those skilled in the art the ability to regulate important phenotypical parameters that lead to a variety of important agronomic and horticulture traits which improve crop yield parameters leading beyond that of its individual components.
摘要:
The present invention is directed to methods for inhibiting the growth of disease organisms, particularly fungi and bacteria, on plant tissues. The present invention is also directed to methods for inhibiting the infestation of plants by insects and larva, particularly sucking and chewing insects. These methods are achieved by applying an auxin or a plant growth regulator (PGR) which will effect the level of auxin in the plant tissue to the seeds or tubers of the plant prior to planting or to the roots, foliage, flowers or fruit of the plant after planting. The auxin or PGR is applied in an amount effective to inhibit growth of the disease organisms or insects, but in an amount insufficient to negatively effect growth of the plant tissues. The auxin may be applied as a natural auxin, synthetic auxin, auxin metabolite, auxin precursor, auxin derivative or a mixture thereof. The presently preferred auxin is indole-3-acetic acid (IAA). The auxin or PGR may be applied to the seeds, tubers or plant tissues. Seeds or tubers may be sprayed with or immersed in an aqueous solution containing the auxin or PGR. Conventional spraying and drip irrigation systems may be used to apply an aqueous solution containing an auxin or PGR to plant tissues. The auxin or PGR may also be applied to the plant tissues as a powder or may be encapsulated within a biologically compatible material to provide slow release to the roots of the plant. The plant tissues may be dusted with a powder, including the auxin or PGR. The encapsulated auxin may be placed in the root zone for uptake of the auxin or PGR by the roots.