摘要:
A system for controlling an absorption chiller includes feedback control loops determining adjustments to system cooling and heating capacities and a controller for simultaneously adjusting positions of an energy input valve, a hot water valve, and a chilled water valve. The controller adjusts valves based on desired adjustments to system cooling and heating capacities and performance maps characterizing relationships between cooling capacity and heating capacities and valve positions. A method for controlling an absorption chiller includes the step of obtaining a performance map characterizing heat energy input to cooling and heating loops as functions of valve positions. To obtain the map, the hot water valve is held in a substantially constant position while the chilled water valve is modulated. Similarly, the hot water valve is modulated while the chilled water valve is held in a substantially constant position.
摘要:
A system for controlling an absorption chiller includes feedback control loops determining adjustments to system cooling and heating capacities and a controller for simultaneously adjusting positions of an energy input valve, a hot water valve, and a chilled water valve. The controller adjusts valves based on desired adjustments to system cooling and heating capacities and performance maps characterizing relationships between cooling capacity and heating capacities and valve positions. A method for controlling an absorption chiller includes the step of obtaining a performance map characterizing heat energy input to cooling and heating loops as functions of valve positions. To obtain the map, the hot water valve is held in a substantially constant position while the chilled water valve is modulated. Similarly, the hot water valve is modulated while the chilled water valve is held in a substantially constant position.
摘要:
A composition of a zeotropic mixture has a first chemical constituent and at least one second, different chemical constituent. The zeoptropic mixture has a temperature glide of 5° C.-25° C. with regard to its saturated vapor temperature and its saturated liquid temperature. The first chemical constituent is selected from 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methyl perfluoropropyl ether, 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone.
摘要:
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
摘要:
A composition of a zeotropic mixture has a first chemical constituent and at least one second, different chemical constituent. The zeoptropic mixture has a temperature glide of 5° C.-25° C. with regard to its saturated vapor temperature and its saturated liquid temperature. The first chemical constituent is selected from 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methyl perfluoropropyl ether, 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone.
摘要:
A power generation system includes a non-azeotropic working fluid mixture and a Rankine cycle system. The Rankine cycle system includes a turbine generator that is driven by vapor of the first working fluid mixture, and a condenser that exchanges thermal energy between the vapor received from the turbine generator and a cooling medium. The working fluid mixture is characterized by a condenser temperature glide during phase change between approximately five degrees and thirty degrees Kelvin, a condensing pressure between approximately one tenth of one percent and eleven percent of a critical pressure of the working fluid mixture, and a condenser bubble point temperature between approximately one degree and nine degrees Kelvin greater than a temperature at which the cooling medium is received by the condenser.
摘要:
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
摘要:
A power generating system in one embodiment employs a Rankine Cycle system that is coupled to multiple heat sources. The Rankine cycle system includes a customized working fluid that comprises a mixture of a plurality of constituent fluids, the selection of which causes the mixture to exhibit a working fluid profile. In one embodiment, the working fluid profile includes a temperature glide portion selected and optimized based on operating conditions of the heat sources, wherein the temperature glide portion includes a constituent phase point at which one of the constituent fluids undergoes a phase change before the other constituent fluids of the mixture.