摘要:
A system for reflectance acquisition of a target includes a light source, an image capture device, and a reflectance reference chart. The reflectance reference chart is fixed relative to the target. The light source provides a uniform band of light across at least a dimension of the target. The image capture device is configured and positioned to encompass at least a portion of the target and at least a portion of the reflectance reference chart within a field-of-view of the image capture device. The image capture device captures a sequence of images of the target and the reflectance reference chart during a scan thereof. Reflectance responses are calculated for the pixels in the sequence of images. Reference reflectance response distribution functions are matched to the calculated reflectance responses, and an image of the target is reconstructed based at least in part on the matched reference reflectance response distribution functions.
摘要:
A system for reflectance acquisition of a target includes a light source, an image capture device, and a reflectance reference chart. The reflectance reference chart is fixed relative to the target. The light source provides a uniform band of light across at least a dimension of the target. The image capture device is configured and positioned to encompass at least a portion of the target and at least a portion of the reflectance reference chart within a field-of-view of the image capture device. The image capture device captures a sequence of images of the target and the reflectance reference chart during a scan thereof. Reflectance responses are calculated for the pixels in the sequence of images. Reference reflectance response distribution functions are matched to the calculated reflectance responses, and an image of the target is reconstructed based at least in part on the matched reference reflectance response distribution functions.
摘要:
Some implementations disclosed herein provide techniques and arrangements to render global light transport in real-time or near real-time. For example, in a pre-computation stage, a first computing device may render points of surfaces (e.g., using multiple light bounces and the like). Attributes for each of the points may be determined. A plurality of machine learning algorithms may be trained using particular attributes from the attributes. For example, a first machine learning algorithm may be trained using a first portion of the attributes and a second machine learning algorithm may be trained using a second portion of the attributes. The trained machine learning algorithms may be used by a second computing device to render components (e.g., diffuse and specular components) of indirect shading in real-time.
摘要:
Some implementations disclosed herein provide techniques and arrangements to render global light transport in real-time or near real-time. For example, in a pre-computation stage, a first computing device may render points of surfaces (e.g., using multiple light bounces and the like). Attributes for each of the points may be determined. A plurality of machine learning algorithms may be trained using particular attributes from the attributes. For example, a first machine learning algorithm may be trained using a first portion of the attributes and a second machine learning algorithm may be trained using a second portion of the attributes. The trained machine learning algorithms may be used by a second computing device to render components (e.g., diffuse and specular components) of indirect shading in real-time.
摘要:
A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
摘要:
A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
摘要:
A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
摘要:
A method and system for implementing capturing and rendering geometric details for mesostructure surfaces is described herein. A mesostructure distance function is defined as a function of a given reference point and a given viewing direction. A distance from a reference point to a mesostructure surface point along a viewing direction is measured using the mesostructure distance function. This distance is used to determine the visibility of mesostructure surface for rendering silhouettes. The lighting visibility of the mesostructure surface point may also be determined and used for determining whether the mesostructure surface point is in shadow. This determination may then be used for rendering shadow silhouettes.
摘要:
A mechanism is disclosed for capturing reflected rays from a surface. A first and second lens aligned along a same optical center axis are configured so that a beam of light collimated parallel to the lens center axis directed to a first side, is converged toward the lens center axis on a second side. A first light beam source between the first and second lenses directs a light beam toward the first lens parallel to the optical center axis. Second light beam source(s) on the second side of the first lens, direct a light beam toward a focal plane of the first lens at a desired angle. An image capturing component, at the second side of the second lens, has an image capture surface directed toward the second lens to capture images of the light reflected from a sample capture surface at the focal plane of the first lens.
摘要:
Described is a search technology in which spatially varying anisotropic reflectance is modeled using image data captured from a single view. Reflectance at each point is represented using a microfacet-based Bidirectional Reflectance Distribution Function (BRDF). Modeling processes the image data, which provides a partial normal distribution function (NDF) for each surface point. The NDF at each selected point is completed by texture synthesis using similar, overlapping partial NDFs from other points. Also described is a scanning device that illuminates a sample surface from a two-dimensional set of light directions using a linear array of LEDs moved over a flat sample.