摘要:
A technique that is usable with a fuel cell system that provides power to a load and is directed toward learning an optimal reactant stoichiometric ratio(s) for starting up the fuel cell system. In accordance with the technique, data representative of a plurality of reactant flows, each of which corresponds to an output power level provided by a fuel cell stack is stored in a memory. Upon startup of the system, a particular reactant flow is provided to the fuel cell stack based on the stored data. A new reactant flow that corresponds to current output power level being provided by the fuel cell stack is learned by adjusting the reactant flow until the fuel cell system is operating at a desired performance level. The stored data is then adapted based on the learned new reactant flow and the adapted data replaces the data that was previously stored in the memory. In this manner, a more exact starting reactant stoichiometric ratio(s) may be determined while the fuel cell system is in operation. This learned reactant stoichiometric ratio may then be used the next time the fuel cell system is powered up, thus, increasing the operating efficiency of the fuel cell system.
摘要:
A technique that is useable with a fuel cell system includes adjusting operating parameters of a fuel cell system to obtain an optimal reactant stoichiometric ratio and thereby maximize the operating efficiency and/or performance of the system. An initial starting point for the reactant stoichiometric ratio is determined based on the output power provided by a fuel cell stack. Thereafter, the optimal reactant stoichiometric ratio is obtained by adjusting the reactant stoichiometric ratio based upon the observed system operating parameters and their response to the adjustment. In this manner, an optimal reactant stoichiometric ratio is reached and maintained while the fuel cell system is in operation, thus, maximizing the system's efficiency and performance.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.
摘要:
A system includes fuel cell units and an on-site computer that is located near the units. The on-site computer is coupled to the fuel cell subsystems to communicate indications of operating conditions of the fuel cell subsystems over a remote communication link to a remote computer.
摘要:
Fuel cell systems and associated methods of operation are provided whereby application of a fuel cell is coordinated with a fuel processor and a hydrogen separator. One such method includes the following steps: (1) operating a fuel processor to convert a hydrocarbon to reformate; (2) reacting the reformate in a fuel cell to generate electrical power; (3) supplying the electrical power to an electrical load, wherein the electrical load has a power requirement threshold; (4) determining whether the electrical power from the fuel cell is below the power requirement threshold; (5) increasing a flow of reformate from the fuel processor to the fuel cell when the electrical power from the fuel cell is below the power requirement threshold; (6) flowing a portion of the reformate from the fuel processor to a hydrogen separator; (7) storing hydrogen from the hydrogen separator in a hydrogen storage vessel; (8) monitoring an amount of hydrogen stored in the hydrogen storage vessel; and (9) adjusting a proportional valve upstream from the fuel cell toward a closed position when the amount of hydrogen in the hydrogen storage tank is below a predetermined threshold to increase a proportion of the reformate from the fuel processor that is flowed to the hydrogen separator.