HIGH PERFORMANCE HMM ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE AND CONVOLUTIVE DISTORTIONS
    1.
    发明申请
    HIGH PERFORMANCE HMM ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE AND CONVOLUTIVE DISTORTIONS 有权
    高性能HMM适应与补充和转换失败的联合补偿

    公开(公告)号:US20090144059A1

    公开(公告)日:2009-06-04

    申请号:US11949044

    申请日:2007-12-03

    IPC分类号: G10L15/14

    CPC分类号: G10L15/20 G10L15/142

    摘要: A method of compensating for additive and convolutive distortions applied to a signal indicative of an utterance is discussed. The method includes receiving a signal and initializing noise mean and channel mean vectors. Gaussian dependent matrix and Hidden Markov Model (HMM) parameters are calculated or updated to account for additive noise from the noise mean vector or convolutive distortion from the channel mean vector. The HMM parameters are adapted by decoding the utterance using the previously calculated HMM parameters and adjusting the Gaussian dependent matrix and the HMM parameters based upon data received during the decoding. The adapted HMM parameters are applied to decode the input utterance and provide a transcription of the utterance.

    摘要翻译: 讨论了补偿施加到表示话语的信号的加法和卷积失真的方法。 该方法包括接收信号并初始化噪声平均和信道均值向量。 计算或更新高斯依赖矩阵和隐马尔可夫模型(HMM)参数以考虑来自信道平均向量的噪声平均向量或卷积失真的加性噪声​​。 HMM参数通过使用先前计算出的HMM参数解码话音并根据解码期间接收到的数据调整高斯相关矩阵和HMM参数进行调整。 适应的HMM参数被应用于解码输入的话语并提供话语的转录。

    Phase sensitive model adaptation for noisy speech recognition
    2.
    发明授权
    Phase sensitive model adaptation for noisy speech recognition 有权
    嘈杂语音识别的相敏模型适应

    公开(公告)号:US08214215B2

    公开(公告)日:2012-07-03

    申请号:US12236530

    申请日:2008-09-24

    IPC分类号: G10L15/14

    CPC分类号: G10L15/065 G10L15/20

    摘要: A speech recognition system described herein includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an updater component that is in communication with a first model and a second model, wherein the updater component automatically updates parameters of the second model based at least in part upon joint estimates of additive and convolutive distortions output by the first model, wherein the joint estimates of additive and convolutive distortions are estimates of distortions based on a phase-sensitive model in the speech utterance received by the receiver component. Further, distortions other than additive and convolutive distortions, including other stationary and nonstationary sources, can also be estimated used to update the parameters of the second model.

    摘要翻译: 本文描述的语音识别系统包括接收失真的语音话语的接收机组件。 所述语音识别还包括与第一模型和第二模型通信的更新器组件,其中所述更新器组件至少部分地基于由所述第一模型输出的加法和卷积失真的联合估计来自动更新所述第二模型的参数 其中,加法和卷积失真的联合估计是基于由接收器部件接收的语音发声中的相敏模型的失真估计。 此外,还可以估计用于更新第二模型参数的除加法和卷积失真之外的失真,包括其他静止和非平稳源。

    PHASE SENSITIVE MODEL ADAPTATION FOR NOISY SPEECH RECOGNITION
    3.
    发明申请
    PHASE SENSITIVE MODEL ADAPTATION FOR NOISY SPEECH RECOGNITION 有权
    语音识别的相敏感模型适应

    公开(公告)号:US20100076758A1

    公开(公告)日:2010-03-25

    申请号:US12236530

    申请日:2008-09-24

    IPC分类号: G10L15/20 G10L15/14

    CPC分类号: G10L15/065 G10L15/20

    摘要: A speech recognition system described herein includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an updater component that is in communication with a first model and a second model, wherein the updater component automatically updates parameters of the second model based at least in part upon joint estimates of additive and convolutive distortions output by the first model, wherein the joint estimates of additive and convolutive distortions are estimates of distortions based on a phase-sensitive model in the speech utterance received by the receiver component. Further, distortions other than additive and convolutive distortions, including other stationary and nonstationary sources, can also be estimated used to update the parameters of the second model.

    摘要翻译: 本文描述的语音识别系统包括接收失真的语音话语的接收机组件。 所述语音识别还包括与第一模型和第二模型通信的更新器组件,其中所述更新器组件至少部分地基于由所述第一模型输出的加法和卷积失真的联合估计来自动更新所述第二模型的参数 其中,加法和卷积失真的联合估计是基于由接收器部件接收的语音发声中的相敏模型的失真估计。 此外,还可以估计用于更新第二模型参数的除加法和卷积失真之外的失真,包括其他静止和非平稳源。

    Adapting a compressed model for use in speech recognition
    4.
    发明授权
    Adapting a compressed model for use in speech recognition 有权
    适应用于语音识别的压缩模型

    公开(公告)号:US08239195B2

    公开(公告)日:2012-08-07

    申请号:US12235748

    申请日:2008-09-23

    IPC分类号: G10L15/20

    CPC分类号: G10L15/20 G10L15/065

    摘要: A speech recognition system includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an adaptor component that selectively adapts parameters of a compressed model used to recognize at least a portion of the distorted speech utterance, wherein the adaptor component selectively adapts the parameters of the compressed model based at least in part upon the received distorted speech utterance.

    摘要翻译: 语音识别系统包括接收失真的语音话语的接收机组件。 所述语音识别还包括适配器组件,所述适配器组件选择性地适配用于识别所述失真语音话语的至少一部分的压缩模型的参数,其中所述适配器组件至少部分地基于接收失真的语音话语选择性地调整所述压缩模型的参数 讲话话语。

    High performance HMM adaptation with joint compensation of additive and convolutive distortions
    5.
    发明授权
    High performance HMM adaptation with joint compensation of additive and convolutive distortions 有权
    高性能HMM适应与加法和卷积扭曲的联合补偿

    公开(公告)号:US08180637B2

    公开(公告)日:2012-05-15

    申请号:US11949044

    申请日:2007-12-03

    IPC分类号: G10L15/00 G10L15/20 G10L17/00

    CPC分类号: G10L15/20 G10L15/142

    摘要: A method of compensating for additive and convolutive distortions applied to a signal indicative of an utterance is discussed. The method includes receiving a signal and initializing noise mean and channel mean vectors. Gaussian dependent matrix and Hidden Markov Model (HMM) parameters are calculated or updated to account for additive noise from the noise mean vector or convolutive distortion from the channel mean vector. The HMM parameters are adapted by decoding the utterance using the previously calculated HMM parameters and adjusting the Gaussian dependent matrix and the HMM parameters based upon data received during the decoding. The adapted HMM parameters are applied to decode the input utterance and provide a transcription of the utterance.

    摘要翻译: 讨论了补偿施加到表示话语的信号的加法和卷积失真的方法。 该方法包括接收信号并初始化噪声平均和信道均值向量。 计算或更新高斯依赖矩阵和隐马尔可夫模型(HMM)参数以考虑来自信道平均向量的噪声平均向量或卷积失真的加性噪声​​。 HMM参数通过使用先前计算出的HMM参数解码话音并根据解码期间接收到的数据调整高斯相关矩阵和HMM参数进行调整。 适应的HMM参数被应用于解码输入的话语并提供话语的转录。

    ADAPTING A COMPRESSED MODEL FOR USE IN SPEECH RECOGNITION
    6.
    发明申请
    ADAPTING A COMPRESSED MODEL FOR USE IN SPEECH RECOGNITION 有权
    适应用于语音识别的压缩模型

    公开(公告)号:US20100076757A1

    公开(公告)日:2010-03-25

    申请号:US12235748

    申请日:2008-09-23

    IPC分类号: G10L15/20

    CPC分类号: G10L15/20 G10L15/065

    摘要: A speech recognition system includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an adaptor component that selectively adapts parameters of a compressed model used to recognize at least a portion of the distorted speech utterance, wherein the adaptor component selectively adapts the parameters of the compressed model based at least in part upon the received distorted speech utterance.

    摘要翻译: 语音识别系统包括接收失真的语音话语的接收机组件。 所述语音识别还包括适配器组件,所述适配器组件选择性地适配用于识别所述失真语音话语的至少一部分的压缩模型的参数,其中所述适配器组件至少部分地基于接收失真的语音话语选择性地调整所述压缩模型的参数 讲话话语。

    Piecewise-based variable-parameter Hidden Markov Models and the training thereof
    7.
    发明授权
    Piecewise-based variable-parameter Hidden Markov Models and the training thereof 有权
    基于分段的可变参数隐马尔科夫模型及其训练

    公开(公告)号:US08160878B2

    公开(公告)日:2012-04-17

    申请号:US12211114

    申请日:2008-09-16

    IPC分类号: G10L15/14 G10L15/20

    CPC分类号: G10L15/144

    摘要: A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech under many different conditions. Each Gaussian mixture component of the VPHMMs is characterized by a mean parameter μ and a variance parameter Σ. Each of these Gaussian parameters varies as a function of at least one environmental conditioning parameter, such as, but not limited to, instantaneous signal-to-noise-ratio (SNR). The way in which a Gaussian parameter varies with the environmental conditioning parameter(s) can be approximated as a piecewise function, such as a cubic spline function. Further, the recognition system formulates the mean parameter μ and the variance parameter Σ of each Gaussian mixture component in an efficient form that accommodates the use of discriminative training and parameter sharing. Parameter sharing is carried out so that the otherwise very large number of parameters in the VPHMMs can be effectively reduced with practically feasible amounts of training data.

    摘要翻译: 语音识别系统使用高斯混合可变参数隐马尔可夫模型(VPHMM)来识别许多不同条件下的语音。 VPHMM的每个高斯混合分量的特征在于平均参数μ和方差参数&Sgr。 这些高斯参数中的每一个作为至少一个环境调节参数的函数而变化,例如但不限于瞬时信噪比(SNR)。 高斯参数随环境条件参数变化的方式可以近似为分段函数,如三次样条函数。 此外,识别系统制定均值参数μ和方差参数&Sgr; 每个高斯混合分量以有效的形式适应使用歧视性训练和参数共享。 执行参数共享,以便通过实际可行的训练数据量可以有效地减少VPHMM中非常大量的参数。

    Parameter clustering and sharing for variable-parameter hidden markov models
    8.
    发明授权
    Parameter clustering and sharing for variable-parameter hidden markov models 有权
    可变参数隐马尔可夫模型的参数聚类和共享

    公开(公告)号:US08145488B2

    公开(公告)日:2012-03-27

    申请号:US12211115

    申请日:2008-09-16

    IPC分类号: G10L15/14

    CPC分类号: G10L15/142

    摘要: A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech. The VPHMMs include Gaussian parameters that vary as a function of at least one environmental conditioning parameter. The relationship of each Gaussian parameter to the environmental conditioning parameter(s) is modeled using a piecewise fitting approach, such as by using spline functions. In a training phase, the recognition system can use clustering to identify classes of spline functions, each class grouping together spline functions which are similar to each other based on some distance measure. The recognition system can then store sets of spline parameters that represent respective classes of spline functions. An instance of a spline function that belongs to a class can make reference to an associated shared set of spline parameters. The Gaussian parameters can be represented in an efficient form that accommodates the use of sharing in the above-summarized manner.

    摘要翻译: 语音识别系统使用高斯混合可变参数隐马尔可夫模型(VPHMM)来识别语音。 VPHMM包括作为至少一个环境调节参数的函数而变化的高斯参数。 每个高斯参数与环境条件参数的关系使用分段拟合方法建模,例如通过使用样条函数。 在训练阶段,识别系统可以使用聚类来识别样条函数的类别,每个类别根据一些距离度量将彼此相似的样条函数分组在一起。 识别系统然后可以存储表示各种样条函数的样条参数集合。 属于类的样条函数的一个实例可以引用相关联的一组样条参数。 高斯参数可以以适合以上述方式共享使用的有效形式来表示。

    Noise suppressor for robust speech recognition
    9.
    发明授权
    Noise suppressor for robust speech recognition 有权
    噪声抑制器用于强大的语音识别

    公开(公告)号:US08185389B2

    公开(公告)日:2012-05-22

    申请号:US12335558

    申请日:2008-12-16

    IPC分类号: G10L15/20

    CPC分类号: G10L21/0208 G10L15/20

    摘要: Described is noise reduction technology generally for speech input in which a noise-suppression related gain value for the frame is determined based upon a noise level associated with that frame in addition to the signal to noise ratios (SNRs). In one implementation, a noise reduction mechanism is based upon minimum mean square error, Mel-frequency cepstra noise reduction technology. A high gain value (e.g., one) is set to accomplish little or no noise suppression when the noise level is below a threshold low level, and a low gain value set or computed to accomplish large noise suppression above a threshold high noise level. A noise-power dependent function, e.g., a log-linear interpolation, is used to compute the gain between the thresholds. Smoothing may be performed by modifying the gain value based upon a prior frame's gain value. Also described is learning parameters used in noise reduction via a step-adaptive discriminative learning algorithm.

    摘要翻译: 描述了通常用于语音输入的噪声降低技术,其中除了信噪比(SNR)之外,基于与该帧相关联的噪声电平来确定用于帧的噪声抑制相关增益值。 在一个实现中,降噪机制基于最小均方误差,Mel-frequency cepstra降噪技术。 设置高增益值(例如一个),以在噪声电平低于阈值低电平时实现很少或没有噪声抑制,以及设置或计算的低增益值,以实现高于阈值高噪声电平的大噪声抑制。 使用噪声功率相关函数,例如对数线性插值来计算阈值之间的增益。 可以通过基于先前帧的增益值修改增益值来执行平滑化。 还描述了通过步进自适应识别学习算法在降噪中使用的学习参数。

    PARAMETER CLUSTERING AND SHARING FOR VARIABLE-PARAMETER HIDDEN MARKOV MODELS
    10.
    发明申请
    PARAMETER CLUSTERING AND SHARING FOR VARIABLE-PARAMETER HIDDEN MARKOV MODELS 有权
    参数聚类和共享可变参数隐藏式MARKOV模型

    公开(公告)号:US20100070280A1

    公开(公告)日:2010-03-18

    申请号:US12211115

    申请日:2008-09-16

    IPC分类号: G10L15/14

    CPC分类号: G10L15/142

    摘要: A speech recognition system uses Gaussian mixture variable-parameter hidden Markov models (VPHMMs) to recognize speech. The VPHMMs include Gaussian parameters that vary as a function of at least one environmental conditioning parameter. The relationship of each Gaussian parameter to the environmental conditioning parameter(s) is modeled using a piecewise fitting approach, such as by using spline functions. In a training phase, the recognition system can use clustering to identify classes of spline functions, each class grouping together spline functions which are similar to each other based on some distance measure. The recognition system can then store sets of spline parameters that represent respective classes of spline functions. An instance of a spline function that belongs to a class can make reference to an associated shared set of spline parameters. The Gaussian parameters can be represented in an efficient form that accommodates the use of sharing in the above-summarized manner.

    摘要翻译: 语音识别系统使用高斯混合可变参数隐马尔可夫模型(VPHMM)来识别语音。 VPHMM包括作为至少一个环境调节参数的函数而变化的高斯参数。 每个高斯参数与环境条件参数的关系使用分段拟合方法建模,例如通过使用样条函数。 在训练阶段,识别系统可以使用聚类来识别样条函数的类别,每个类别根据一些距离度量将彼此相似的样条函数分组在一起。 识别系统然后可以存储表示各种样条函数的样条参数集合。 属于类的样条函数的一个实例可以引用相关联的一组样条参数。 高斯参数可以以适合以上述方式共享使用的有效形式来表示。