摘要:
A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
摘要:
A wireless circuit (1100, 1190) for tracking an incoming signal and for use in a network (2000) having handover from one part (Cell A) of the network to another part (Cell B). The wireless circuit includes a processor (CE 1100) responsive to the incoming signal, the processor (CE 1100) operable to generate pulse edges representing network-based receiver synchronization instances (RSIs), and a timekeeping circuitry (2420, 2430, 2450) including an oscillator circuitry (2162), the timekeeping circuitry (2420, 2430) operable to maintain a set of counter circuitries (2422-2428) including a counter circuitry (2422) operable to maintain at least one network time component based on the RSIs and another counter circuitry (2428) operable at least during handover and during loss of network coverage for maintaining at least one internal time component (NC) based on the oscillator circuitry (2162), the set of counter circuitries (2422-2428) operable to account for elapsing time substantially gaplessly and substantially without overlap between the time components during a composite of network coverage, loss of network coverage and handover, and the timekeeping circuitry further including a time generator (2450) for combining the time components from the set of counter circuitries (2422-2428) to generate an approximate absolute time (SGTB). Other electronic circuits, positioning systems, methods of operation, and processes of manufacture are also disclosed and claimed.
摘要:
An electronic circuit for use with time of arrival signals from a network, including a position determination unit, a first clock, a second clock, and processing circuitry coupled to said first clock, said second clock, and said position determination unit. The processing circuitry is operable to project a relatively-accurate subsequent global time based on said first and second clocks and to then return said relatively-accurate subsequent global time to said position determination unit to facilitate a subsequent position determination by said position determination unit.
摘要:
An electronic circuit for use with time of arrival signals from a network, including a position determination unit, a first clock, a second clock, and processing circuitry coupled to said first clock, said second clock, and said position determination unit. The processing circuitry is operable to project a relatively-accurate subsequent global time based on said first and second clocks and to then return said relatively-accurate subsequent global time to said position determination unit to facilitate a subsequent position determination by said position determination unit.
摘要:
A technique for the blind equalization of digital communications channels relies on the iterative minimization of a cost function known as the J-divergence between a known or assumed probability density function (PDF) of the source data signal and an estimated PDF of a receiver decision output signal derived from the equalizer output signal by minimum-distance mapping. The J-divergence function is defined in terms of the Kullback-Leibler distance between the two PDFs. Minimization is achieved by continually updating both an equalizer tap coefficient vector and the estimated PDF of the decision output signal using a stochastic gradient algorithm applied to the J-divergence cost function.