Abstract:
A circuit for compensating variables in a measurement transmitter. Within the transmitter, a sensor senses a primary process variable such as differential pressure and a converter digitizes the sensed process variable. The sensor senses pressures within a span of pressures values. A memory inside the transmitter stores at least two membership functions, each membership function having a non-zero value over a predetermined region of the process variable span and a substantially zero value over the remainder of the span. The memory also stores a set of compensation formulas, each formula corresponding to a membership function. A selection circuit in the transmitter selects those membership functions which have a non-zero value at the digitized process variable and a correction circuit provides at least one correction value, each correction value calculated from a compensation formula corresponding to a selected membership function. A weighting circuit multiplies each correction value by its corresponding selected membership function, and combines the multiplicands to provide a compensated process variable. The compensated process variable is coupled to a control circuit connecting the transmitter to a control system.
Abstract:
A circuit for compensating variables in a measurement transmitter. Within the transmitter, a sensor senses a primary process variable such as differential pressure and a converter digitizes the sensed process variable. The sensor senses pressures within a span of pressures values. A memory inside the transmitter stores at least two membership functions, each membership function having a non-zero value over a predetermined region of the process variable span and a substantially zero value over the remainder of the span. The memory also stores a set of compensation formulas, each formula corresponding to a membership function. A selection circuit in the transmitter selects those membership functions which have a non-zero value at the digitized process variable and a correction circuit provides at least one correction value, each correction value calculated from a compensation formula corresponding to a selected membership function. A weighting circuit multiplies each correction value by its corresponding selected membership function, and combines the multiplicands to provide a compensated process variable. The compensated process variable is coupled to a control circuit connecting the transmitter to a control system.
Abstract:
In this invention, a valve positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the position of the valve and the control pressure, and a control circuit in the positioner uses both the sensed pressure and position to provide a command output to a pneumatic section which produces the control pressure. In another embodiment of the invention, a positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the valve position and pneumatics in the positioner provide the control pressure as a function of the sensed position and an output from a control circuit within the positioner. The positioner includes a diagnostic circuit which stores a valve attribute and provides a diagnostic output as a function of the stored valve characteristic and a selected one of the sensed variables. In another embodiment of the invention, a positioner includes a correction circuit for storing a valve attribute affected by one of a set of physical parameters and for receiving a selected one of the set of sensed physical parameters. The correction means compensates a command output from a control circuit as a function of the sensed physical parameter and the stored valve characteristic. In another embodiment, the positioner includes a benchset control circuit which ramps the control pressure between an initial control pressure and a final control pressure and back to the initial control pressure, while sampling specific control pressures and their corresponding positions, in order to provide an output indicating the proper spring preload force on an actuator spring.
Abstract:
In this invention, a valve positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the position of the valve and the control pressure, and a control circuit in the positioner uses both the sensed pressure and position to provide a command output to a pneumatic section which produces the control pressure. In another embodiment of the invention, a positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the valve position and pneumatics in the positioner provide the control pressure as a function of the sensed position and an output from a control circuit within the positioner. The positioner includes a diagnostic circuit which stores a valve attribute and provides a diagnostic output as a function of the stored valve characteristic and a selected one of the sensed variables. In another embodiment of the invention, a positioner includes a correction circuit for storing a valve attribute affected by one of a set of physical parameters and for receiving a selected one of the set of sensed physical parameters. The correction means compensates a command output from a control circuit as a function of the sensed physical parameter and the stored valve characteristic. In another embodiment, the positioner includes a benchset control circuit which ramps the control pressure between an initial control pressure and a final control pressure and back to the initial control pressure, while sampling specific control pressures and their corresponding positions, in order to provide an output indicating the proper spring preload force on an actuator spring.
Abstract:
In this invention, a valve positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the position of the valve and the control pressure, and a control circuit in the positioner uses both the sensed pressure and position to provide a command output to a pneumatic section which produces the control pressure. In another embodiment of the invention, a positioner receives a setpoint from a master and provides a control pressure to a valve actuator for controlling a valve. A sensing circuit in the positioner senses the valve position and pneumatics in the positioner provide the control pressure as a function of the sensed position and an output from a control circuit within the positioner. The positioner includes a diagnostic circuit which stores a valve attribute and provides a diagnostic output as a function of the stored valve characteristic and a selected one of the sensed variables. In another embodiment of the invention, a positioner includes a correction circuit for storing a valve attribute affected by one of a set of physical parameters and for receiving a selected one of the set of sensed physical parameters. The correction means compensates a command output from a control circuit as a function of the sensed physical parameter and the stored valve characteristic. In another embodiment, the positioner includes a benchset control circuit which ramps the control pressure between an initial control pressure and a final control pressure and back to the initial control pressure, while sampling specific control pressures and their corresponding positions, in order to provide an output indicating the proper spring preload force on an actuator spring.
Abstract:
Embodiments of the present invention are directed to sensor nets from which data is extracted using mobile devices. Sensor devices within the sensor nets record access attempts by mobile devices. Using the recorded access attempts, the probabilities of future access to respective sensor devices are calculated. Collection points are selected using the calculated probabilities. Also, the probabilities of future access are distributed through the sensor nets. Routing of measurement data within the sensor nets may occur using the calculated probabilities.
Abstract:
A field device such as a transmitter in a process control system includes conversion circuitry coupled between Fieldbus interface circuitry and transmitter interface circuitry. The transmitter includes a transducer for sensing a process variable and providing a transducer output. Measurement circuitry couples to the transducer output, processes the transducer output and provides a measurement output. The transmitter interface circuitry couples to the measurement circuitry and provides an interface output representative of the measurement output. Further, the transmitter interface circuitry receives a transmitter command and responds in accordance with the transmitter command. The Fieldbus interface circuitry is adapted to couple to a process control loop which operates in accordance with the Fieldbus standard.
Abstract:
A pair of master units share a common communication link to communicate with one or more slave units. Each slave unit transmits a message only in response to a message from one of the master units. When an initial transmission request is received by a master unit, it monitors the communication link and only initiates transmission of a message when the link has been quiet for a link quiet time period. After completing a transmission of a message, the master unit waits a link grant time period before transmitting again to permit the other master unit an opportunity to transmit a message if it desires. Synchronization of the two master units, therefore, is achieved quickly and with minimum overhead.
Abstract:
Representative embodiments are directed to distributed sensor systems from which measurement data is extracted using mobile devices. Representative embodiments record access attempts by the mobile devices and calculate the probabilities of future access by a mobile device to sensor devices using the recorded information. Collection points are selected in response to the probabilities of future access. Additionally, memory management and data prioritization may occur that is at least partially dependent upon the probabilities of future access.
Abstract:
A process device couples to a process control loop. The process device receives process signals. A memory in the process device contains a nominal parameter value and a rule. Computing circuitry calculates a statistical parameter of the process signal and operates on the statistical parameter and the stored nominal value based upon the stored rule and responsively provides an event output based upon the operation. Output circuitry provides an output in response to the event output. The statistical parameter can be used in statistical process control systems.