Abstract:
A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.
Abstract:
A process where gas bubbles are produced under a partial vacuum and are dynamically agitated creating a vortex that allows for homogenization of the gas desired for dissolution into the affected aquifer. The technology is applied through installation of the apparatus into treatment wells. The treatment wells are installed as stand-alone wells where hydrogeological conditions are conductive, i.e. sandy aquifers, fractured bedrock aquifers, or in treatment cells where hydrogeological conditions are less conductive, i.e. saturated sediments that are clay rich. The system does not use a compressed gas, compressed air source, or forced air/gas through the use of compressors or blowers. Rather, it uses cavitation to produce a slight vacuum to draw gas or air through a snorkel apparatus that is attached to the gas mixing chamber of the unit. The unit is installed so that it is submerged in the treatment well below the water table. The gas is expelled under a slight vacuum from the base of the unit through a perforated base plate. A turbine is turned at a high rate of rotations per minute below the perforated plate, and causes the cavitation and vortex dynamics. This produces very small gas bubbles resulting in large gas surface exposure to the groundwater being treated. The gas bubbles experience a long retention time due to their small size and from the vortex produced by the system, which keeps the bubbles in suspension. The vortex dynamics provides a constant and consistent flux of dissolved gas to the aquifer. This translates to an efficient, energy saving system that conserves the amount of gas needed to produce the dissolved gas levels desired.