摘要:
A method of constructing a model of recognizing English pronunciation variations is used to recognize English pronunciations with different intonations influenced by non-English native languages. The method includes collecting a plurality of sound information corresponding to English expressions; corresponding phonetic alphabets of the non-English native language and English of a region to International Phonetic Alphabets (IPAs), so as to form a plurality of pronunciation models; converting the sound information with the pronunciation models to form a pronunciation variation network of the corresponding English expressions, thereby detecting whether the English expressions have pronunciation variation paths; and finally summarizing the pronunciation variation paths to form a plurality of pronunciation variation rules. Furthermore, the pronunciation variations are represented by phonetics features to infer possible pronunciation variation rules, which are stored to form pronunciation variation models. The construction of the pronunciation variation models enhances applicability of an English recognition system and accuracy of voice recognition.
摘要:
A system and pupil position acquisition method and a device containing computer software for executing the same are provided. The system includes a shooting module, a scanning module, a signal transformation module, and a signal analysis module. The shooting module shoots an eyeball image using an image shooting device, such as a charge-coupled device (CCD) camera. The scanning module scans the eyeball image to acquire an eyeball signal. The signal transformation module performs a wavelet transform on the eyeball signal. The signal analysis module analyzes the eyeball signal after the wavelet transform to acquire a signal interval, and analyzes and acquires a position of a pupil with respect to the eyeball image according to the signal interval.
摘要:
A system and pupil position acquisition method and a device containing computer software for executing the same are provided. The system includes a shooting module, a scanning module, a signal transformation module, and a signal analysis module. The shooting module shoots an eyeball image using an image shooting device, such as a charge-coupled device (CCD) camera. The scanning module scans the eyeball image to acquire an eyeball signal. The signal transformation module performs a wavelet transform on the eyeball signal. The signal analysis module analyzes the eyeball signal after the wavelet transform to acquire a signal interval, and analyzes and acquires a position of a pupil with respect to the eyeball image according to the signal interval.