摘要:
A superconducting cable includes a core material, conductor layers formed by means of helically winding superconducting wires around the core material, electrically insulating layers, and magnetic shielding layers formed by means of helically winding superconducting wires around each of the electrically shielding layers. The superconducting wire is wound at the shortest pitch on the outermost conductor layer and is wound at the longest pitch on the outermost magnetic shielding layer.
摘要:
A phase split structure of a superconducting cable includes three cable cores each having a shield layer provided around a superconductor, a splitter box housing the three cable cores extending from an assembly portion where the three cable cores are assembled into the cable, in a state in which the cable cores are spaced apart from each other, and an electrically-conductive connecting portion connecting respective shield layers of the cable cores to each other within the splitter box. In this way, occurrence of a large magnetic field outside the cable cores can effectively be reduced.
摘要:
A phase separation jig (100) for a superconducting cable includes: a cable holder (10) maintaining each core (80) of a multi-core superconducting cable (2) in a predetermined tolerable bending manner; and a coupler (20, 30) holding the cable holder (10) for each core (80) at a predetermined spacing with each other. Each core (80) is spaced apart from each other and maintained in a tolerable bending manner by the holder (10). Accordingly, a phase separation structure can be obtained which can regulate deformation of the cable and prevent abnormal deformation even for a superconducting cable.
摘要:
A superconducting cable is manufactured by providing spacers 12 in a plurality of cores 2 at the time of stranding of the cores 2, and removing the spacers 12 before the stranded cores 2 are housed in a thermally insulated pipe and housing the cores into the thermally insulated pipe while the strands are held in a slacked state. By means of temporal interposition of the spacers, there is easily manufactured three cores having sufficient slack to manage thermal contraction which occurs when the cores are cooled in the thermally insulated pipe.
摘要:
The present invention provides a terminal structure of a superconducting cable including a cable core having a superconducting shield layer and an electrical insulation layer. The superconducting shield layer has a radially outer portion provided with by a connection electrode and the superconducting shield layer and the connection electrode are connected together with a low melting solder. The connection electrode has a ground wire connected thereto to ground the superconducting shield layer. For a multiphase cable including a plurality of cable cores, connection electrodes are linked by a conductive coupling member to short circuit superconducting shield layers. The superconducting shield layer can be grounded without impaired insulating property of the electrical insulation layer.
摘要:
The present invention provides a terminal structure of a superconducting cable including a cable core having a superconducting shield layer and an electrical insulation layer. The superconducting shield layer has a radially outer portion provided with by a connection electrode and the superconducting shield layer and the connection electrode are connected together with a low melting solder. The connection electrode has a ground wire connected thereto to ground the superconducting shield layer. For a multiphase cable including a plurality of cable cores, connection electrodes are linked by a conductive coupling member to short circuit superconducting shield layers. The superconducting shield layer can be grounded without impaired insulating property of the electrical insulation layer.
摘要:
A joint structure of a superconducting cable having improved connection strength and preventing break of a superconducting layer is provided. A central conductor of an insulating spacer and a superconducting cable are connected via a conductor connecting member having a sleeve-shaped end. Specifically, the central conductor of the insulating spacer and the conductor connecting member are connected by multi-contact connection.
摘要:
A multiphase superconducting cable connection structure includes a connection box accommodating three conductor connects connecting a superconductor of a cable core of each phase extracted from a pair of 3-phase superconducting cables, a solid insulation member fixed to an outer circumference of each conductor connect, and a metal flange fixing the solid insulation member to the connection box. By fixing the metal flange to the connection box (a refrigerant vessel), the conductor connect can be positioned and the conductor connector's movement caused as the cable core thermally contracts can be reduced. The structure can help to position the conductor connect in the connection box and reliably hold it at a prescribed position.
摘要:
A multiphase superconducting cable connection structure includes a connection box accommodating three conductor connects connecting a superconductor of a cable core of each phase extracted from a pair of 3-phase superconducting cables, a solid insulation member fixed to an outer circumference of each conductor connect, and a metal flange fixing the solid insulation member to the connection box. By fixing the metal flange to the connection box (a refrigerant vessel), the conductor connect can be positioned and the conductor connector's movement caused as the cable core thermally contracts can be reduced. The structure can help to position the conductor connect in the connection box and reliably hold it at a prescribed position.
摘要:
A phase split structure of a superconducting cable includes three cable cores each having a shield layer provided around a superconductor, a splitter box housing the three cable cores extending from an assembly portion where the three cable cores are assembled into the cable, in a state in which the cable cores are spaced apart from each other, and a shield connecting portion connecting respective shield layers of the cable cores to each other within the splitter box. The shield connecting portion allows the cable cores to have their respective shield layers connected together with low resistance and each shield layer can pass a current substantially equal in magnitude to that which each superconductor passes. Thus in each shield layer a magnetic field can be formed having a level that can cancel a magnetic field generated from each superconductor. The structure can thus effectively prevent a large magnetic field external to the cable core.