Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
A device may establish a communication session, with a client device, for monitoring a latency of a service. The device may receive, from the client device, a request for a monitored service list. The monitored service list may identify one or more services for which service latency monitoring is supported. The device may provide, to the client device, the monitored service list. The device may receive, from the client device, a service latency monitoring session request that may identify the service to be monitored. The device may establish, with the client device, the service latency monitoring session based on the service latency monitoring session request. The device may cause the service to be performed. The device may generate information for determining the latency of the service. The device may transmit, to the client device and via the service latency monitoring session, the information for determining the latency of the service.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
A device may establish a communication session, with a client device, for monitoring a latency of a service. The device may receive, from the client device, a request for a monitored service list. The monitored service list may identify one or more services for which service latency monitoring is supported. The device may provide, to the client device, the monitored service list. The device may receive, from the client device, a service latency monitoring session request that may identify the service to be monitored. The device may establish, with the client device, the service latency monitoring session based on the service latency monitoring session request. The device may cause the service to be performed. The device may generate information for determining the latency of the service. The device may transmit, to the client device and via the service latency monitoring session, the information for determining the latency of the service.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.
Abstract:
Techniques are described for extending a two-way active measurement protocol (TWAMP) to enable measurement of service key performance indicators (KPIs) in a software defined network (SDN) and network function virtualization (NFV) architecture. The TWAMP extensions enable control messaging to be handled by a TWAMP control client executed on a centralized controller, and data messaging to be handled by a TWAMP session initiator executed on a separate network device. Techniques are also described for extending TWAMP to enable measurement of any of a plurality of service KPIs for a given service supported at a TWAMP server. The service KPIs may include one or more of keepalive measurements, round trip time measurements, path delay measurements, service latency measurements, or service load measurements. The TWAMP extensions for the service KPIs may be used in both conventional network architectures and in SDN and NFV architectures.