Maintaining processing core affinity for fragmented packets in network devices

    公开(公告)号:US11949590B1

    公开(公告)日:2024-04-02

    申请号:US18169696

    申请日:2023-02-15

    Abstract: Techniques are disclosed for maintaining processing unit core affinity for fragmented packets. In one example, a service physical interface card (PIC) implementing a service plane of a network device receives fragmented and/or non-fragmented packet data for a traffic flow. The service PIC comprises at least one processing unit comprising multiple cores. A routing engine operating in a control plane of the network device defines one or more core groups comprising a subset of the cores. The routing engine assigns the traffic flow to a core group and a forwarding engine operating in a forwarding plane of the network device forwards the packet data for the traffic flow to the assigned core group. A core of the assigned core group applies a network service to the fragmented and/or non-fragmented packet data for the traffic flow, and the forwarding engine forwards the packet data for the traffic flow toward a destination.

    Maintaining processing core affinity for fragmented packets in network devices

    公开(公告)号:US11621914B2

    公开(公告)日:2023-04-04

    申请号:US17105008

    申请日:2020-11-25

    Abstract: Techniques are disclosed for maintaining processing unit core affinity for fragmented packets. In one example, a service physical interface card (PIC) implementing a service plane of a network device receives fragmented and/or non-fragmented packet data for a traffic flow. The service PIC comprises at least one processing unit comprising multiple cores. A routing engine operating in a control plane of the network device defines one or more core groups comprising a subset of the cores. The routing engine assigns the traffic flow to a core group and a forwarding engine operating in a forwarding plane of the network device forwards the packet data for the traffic flow to the assigned core group. A core of the assigned core group applies a network service to the fragmented and/or non-fragmented packet data for the traffic flow, and the forwarding engine forwards the packet data for the traffic flow toward a destination.

    NETWORK TRAFFIC STEERING AMONG CPU CORES USING FORWARDING PATH ELEMENTS

    公开(公告)号:US20210288903A1

    公开(公告)日:2021-09-16

    申请号:US16818819

    申请日:2020-03-13

    Abstract: In general, the disclosure describes techniques for programming a forwarding plane of a network device to cause the forwarding plane to load balance or otherwise direct packet flows to particular central processing unit (CPU) cores among a plurality of CPU cores. For example, a network device includes a control unit comprising processing circuitry in communication with a memory, wherein the processing circuitry is configured to execute one or more processes. Additionally, the network device includes a forwarding unit comprising an interface card, a packet processor, and a forwarding unit memory. The one or more processes of the control unit are configured for execution by the processing circuitry to configure the forwarding unit memory of the forwarding unit with one or more forwarding path elements, where the one or more forwarding path elements map a packet flow to a CPU core of the plurality of CPU cores for processing.

    Maintaining processing core affinity for fragmented packets in network devices

    公开(公告)号:US12273264B1

    公开(公告)日:2025-04-08

    申请号:US18434618

    申请日:2024-02-06

    Abstract: Techniques are disclosed for maintaining processing unit core affinity for fragmented packets. In one example, a service physical interface card (PIC) implementing a service plane of a network device receives fragmented and/or non-fragmented packet data for a traffic flow. The service PIC comprises at least one processing unit comprising multiple cores. A routing engine operating in a control plane of the network device defines one or more core groups comprising a subset of the cores. The routing engine assigns the traffic flow to a core group and a forwarding engine operating in a forwarding plane of the network device forwards the packet data for the traffic flow to the assigned core group. A core of the assigned core group applies a network service to the fragmented and/or non-fragmented packet data for the traffic flow, and the forwarding engine forwards the packet data for the traffic flow toward a destination.

    MAINTAINING PROCESSING CORE AFFINITY FOR FRAGMENTED PACKETS IN NETWORK DEVICES

    公开(公告)号:US20220166709A1

    公开(公告)日:2022-05-26

    申请号:US17105008

    申请日:2020-11-25

    Abstract: Techniques are disclosed for maintaining processing unit core affinity for fragmented packets. In one example, a service physical interface card (PIC) implementing a service plane of a network device receives fragmented and/or non-fragmented packet data for a traffic flow. The service PIC comprises at least one processing unit comprising multiple cores. A routing engine operating in a control plane of the network device defines one or more core groups comprising a subset of the cores. The routing engine assigns the traffic flow to a core group and a forwarding engine operating in a forwarding plane of the network device forwards the packet data for the traffic flow to the assigned core group. A core of the assigned core group applies a network service to the fragmented and/or non-fragmented packet data for the traffic flow, and the forwarding engine forwards the packet data for the traffic flow toward a destination.

    Network traffic steering among CPU cores using forwarding path elements

    公开(公告)号:US11140075B1

    公开(公告)日:2021-10-05

    申请号:US16818819

    申请日:2020-03-13

    Abstract: In general, the disclosure describes techniques for programming a forwarding plane of a network device to cause the forwarding plane to load balance or otherwise direct packet flows to particular central processing unit (CPU) cores among a plurality of CPU cores. For example, a network device includes a control unit comprising processing circuitry in communication with a memory, wherein the processing circuitry is configured to execute one or more processes. Additionally, the network device includes a forwarding unit comprising an interface card, a packet processor, and a forwarding unit memory. The one or more processes of the control unit are configured for execution by the processing circuitry to configure the forwarding unit memory of the forwarding unit with one or more forwarding path elements, where the one or more forwarding path elements map a packet flow to a CPU core of the plurality of CPU cores for processing.

Patent Agency Ranking