-
公开(公告)号:US08364612B2
公开(公告)日:2013-01-29
申请号:US12559921
申请日:2009-09-15
IPC分类号: G06F15/18
CPC分类号: G06N99/005
摘要: Machine learning using relational databases is described. In an embodiment a model of a probabilistic relational database is formed by augmenting relation schemas of a relational database with probabilistic attributes. In an example, the model comprises constraints introduced by linking the probabilistic attributes using factor statements. For example, a compiler translates the model into a factor graph data structure which may be passed to an inference engine to carry out machine learning. For example, this enables machine learning to be integrated with the data and it is not necessary to pre-process or reformat large scale data sets for a particular problem domain. In an embodiment a machine learning system for estimating skills of players in an online gaming environment is provided. In another example, a machine learning system for data mining of medical data is provided. In some examples, missing attribute values are filled using machine learning results.
摘要翻译: 描述使用关系数据库的机器学习。 在一个实施例中,通过用概率属性来增加关系数据库的关系模式来形成概率关系数据库的模型。 在一个例子中,模型包括通过使用因子语句链接概率属性引入的约束。 例如,编译器将该模型转换为因子图数据结构,该结构可被传递给推理机以执行机器学习。 例如,这使得机器学习能够与数据集成,并且不需要为特定问题域预处理或重新格式化大规模数据集。 在一个实施例中,提供了一种用于估计在线游戏环境中的玩家的技能的机器学习系统。 在另一示例中,提供了用于医疗数据的数据挖掘的机器学习系统。 在一些示例中,使用机器学习结果填充缺少的属性值。