Abstract:
The invention provides a lighting unit (100) comprising (1) a vacuum ultraviolet (VUV) radiation based source of radiation (10) configured to generate VUV radiation (11), and (2) a luminescent material (20) configured to convert at least part of the VUV radiation into visible luminescent material light (21), wherein the luminescent material comprises a trivalent praseodymium containing material selected from the group consisting of (Zr1-x-yHfxPry)(Si1-yPy)04, (Zr1-x-yHfxPry)3((P1-3/4yS3/4y)04)4, and (Zr1-x-yHxPry)3((B1-3/4yX3/4y))O3)4, with x in the range of 0.0-1.0 and y being larger than 0 and being equal to or smaller than 0.15.
Abstract:
A luminescent composition includes a host matrix sensitized by Ce3+ and showing emission in the ultraviolet range. Typical host matrices include fluorides, sulphates, and phosphates, in particular A(Y1-x-yLuxLay)F4, A(Y1-x-yLuxLay)3F10, BaCa(Y1-x-yLuxLay)2F10, and Ba(Y1-x-yLuxLay)2F8, wherein A=Li, Na, K, Rb, or Cs. One or more of these luminescent compositions may be applied as a ceramic or single crystalline converter for CT, PET or SPECT scanners, or as a luminescent powder layer for x-ray intensifying screens.