INTERACTIVE ITERATIVE IMAGE ANNOTATION

    公开(公告)号:US20220019860A1

    公开(公告)日:2022-01-20

    申请号:US17294731

    申请日:2019-11-15

    Abstract: A system and computer-implemented method are provided for annotation of image data. A user is enabled to iteratively annotate the image data. An iteration of said iterative annotation comprises generating labels for a current image data part based on user-verified labels of a previous image data part, and enabling the user to verify and correct said generated labels to obtain user-verified labels for the current image data part. The labels for the current image data part are generated by combining respective outputs of a label propagation algorithm and a machine-learned classifier trained on user-verified labels and image data and applied to image data of the current image data part. The machine-learned classifier is retrained using the user-verified labels and the image data of the current image data part to obtain a retrained machine-learned classifier.

    MODEL-BASED SEGMENTATION OF AN ANATOMICAL STRUCTURE
    3.
    发明申请
    MODEL-BASED SEGMENTATION OF AN ANATOMICAL STRUCTURE 审中-公开
    基于模型的分解结构分解

    公开(公告)号:US20160379372A1

    公开(公告)日:2016-12-29

    申请号:US15039899

    申请日:2014-12-02

    Abstract: A method is provided for generating a deformable model (300) for segmenting an anatomical structure in a medical image. The anatomical structure comprises a wall. The deformable model (300) is generated such that it comprises, in addition to two surface meshes (320, 360), an intermediate layer mesh (340) for being applied in-between a first surface layer of the wall and a second surface layer of the wall. In generating the intermediate layer mesh (340), the mesh topology of at least part (400) of the intermediate layer mesh is matched to the mesh topology of one of the surface meshes (320, 360), thereby establishing matching mesh topologies. The deformable model (300), as generated, better matches the composition of such walls, thereby providing a more accurate segmentation.

    Abstract translation: 提供了一种用于生成用于分割医学图像中的解剖结构的可变形模型(300)的方法。 解剖结构包括一个墙壁。 生成可变形模型(300),使得除了两个表面网格(320,360)之外,还包括用于施加在壁的第一表面层和第二表面层之间的中间层网格(340) 的墙。 在生成中间层网格(340)时,中间层网格的至少部分(400)的网格拓扑与一个表面网格(320,360)的网格拓扑匹配,从而建立匹配的网格拓扑。 所产生的可变形模型(300)更好地匹配这种壁的组成,从而提供更准确的分割。

Patent Agency Ranking