Abstract:
A hybrid imaging system includes a first imaging system configured to acquire anatomical data of a first field of view of an anatomical structure. A second imaging system configured to acquire functional data of the anatomical structure, the second imaging system acquiring functional data in a two-pass list-mode acquisition scheme. A reconstruction processor configured to reconstruct the functional data based on attenuation data into an attenuation corrected image and reconstruct the anatomical data into one or more high resolution images of one or more regions of interest.
Abstract:
A diagnostic imaging system retrieves data (206) from a plurality of accessible data sources, the accessible data sources storing data including physiological data describing a subject to be imaged, a nature of a requested diagnostic image, image preferences of a clinician who requested the diagnostic image, and previously reconstructed images of the requested nature of the subject and/or other subjects, reconstruction parameters and/or sub-routines used to reconstruct the previously reconstructed images. The system analyzes (6, 12) the retrieved data to automatically generate reconstruction parameters and/or sub-steps specific to the nature of the requested diagnostic image, the subject, and the clinician image preferences. The system controls a display device (10, 216) to display the generated reconstruction parameters and/or sub-routines to the user for a user selection. The system sets a reconstruction processor system to reconstruct scan data using the selected reconstruction parameters and/or sub-routines.
Abstract:
A diagnostic imaging system retrieves data (206) from a plurality of accessible data sources, the accessible data sources storing data including physiological data describing a subject to be imaged, a nature of a requested diagnostic image, image preferences of a clinician who requested the diagnostic image, and previously reconstructed images of the requested nature of the subject and/or other subjects, reconstruction parameters and/or sub-routines used to reconstruct the previously reconstructed images. The system analyzes (6, 12) the retrieved data to automatically generate reconstruction parameters and/or sub-steps specific to the nature of the requested diagnostic image, the subject, and the clinician image preferences. The system controls a display device (10, 216) to display the generated reconstruction parameters and/or sub-routines to the user for a user selection. The system sets a reconstruction processor system to reconstruct scan data using the selected reconstruction parameters and/or sub-routines.
Abstract:
A database (52) stores image recipient reconstruction profiles each comprising image reconstruction parameter values. An image reconstruction module (30) is configured to reconstruct medical imaging data to generate a reconstructed image. An image reconstruction setup module (50) is configured to retrieve an image recipient reconstruction profile from the database (52) for an intended image recipient associated with a set of medical imaging data and to invoke the image reconstruction module (30) to reconstruct the set of medical imaging data using image reconstruction parameter values of the retrieved image recipient reconstruction profile to generate a reconstructed image for the intended image recipient. A feedback acquisition module (54) is configured to acquire feedback from the intended image recipient pertaining to the reconstructed image for the intended image recipient. A profile updating module (56) is configured to update the image recipient reconstruction profile of the intended image recipient based on the acquired feedback.
Abstract:
A positron emission tomography (PET) system includes a memory (18), a subject support (3), a categorizing unit (20), and a reconstruction unit (22). The memory (18) continuously records detected coincident event pairs detected by PET detectors (4). The subject support (3) supports a subject and moves in a continuous movement through a field of view (10) of the PET detectors (4). The categorizing unit (20) categorizes the recorded coincident pairs into each of a plurality of spatially defined virtual frame (14). The reconstruction unit (22) reconstructs the categorized coincident pairs of each virtual frame into a frame image and combines the frame images into a common elongated image.
Abstract:
A positron emission tomography (PET) system includes a memory (18), a subject support (3), a categorizing unit (20), and a reconstruction unit (22). The memory (18) continuously records detected coincident event pairs detected by PET detectors (4). The subject support (3) supports a subject and moves in a continuous movement through a field of view (10) of the PET detectors (4). The categorizing unit (20) categorizes the recorded coincident pairs into each of a plurality of spatially defined virtual frame (14). The reconstruction unit (22) reconstructs the categorized coincident pairs of each virtual frame into a frame image and combines the frame images into a common elongated image.
Abstract:
A database (52) stores image recipient reconstruction profiles each comprising image reconstruction parameter values. An image reconstruction module (30) is configured to reconstruct medical imaging data to generate a reconstructed image. An image reconstruction setup module (50) is configured to retrieve an image recipient reconstruction profile from the database (52) for an intended image recipient associated with a set of medical imaging data and to invoke the image reconstruction module (30) to reconstruct the set of medical imaging data using image reconstruction parameter values of the retrieved image recipient reconstruction profile to generate a reconstructed image for the intended image recipient. A feedback acquisition module (54) is configured to acquire feedback from the intended image recipient pertaining to the reconstructed image for the intended image recipient. A profile updating module (56) is configured to update the image recipient reconstruction profile of the intended image recipient based on the acquired feedback.
Abstract:
A hybrid imaging system includes a first imaging system configured to acquire anatomical data of a first field of view of an anatomical structure. A second imaging system configured to acquire functional data of the anatomical structure, the second imaging system acquiring functional data in a two-pass list-mode acquisition scheme. A reconstruction processor configured to reconstruct the functional data based on attenuation data into an attenuation corrected image and reconstruct the anatomical data into one or more high resolution images of one or more regions of interest.