DEVICES, SYSTEMS, AND METHODS FOR MULTIMODAL ULTRASOUND IMAGING

    公开(公告)号:US20200077985A1

    公开(公告)日:2020-03-12

    申请号:US16566398

    申请日:2019-09-10

    Abstract: Improved ultrasound imaging devices and methods of using the devices are provided. An intraluminal imaging device is configured process imaging data obtained using a single imaging sequence in different processing paths to generate B-mode and flow images. For example, an ultrasound imaging system includes an ultrasound imaging device comprising an array of acoustic elements and a processor in communication with the array. The processor activates the array of acoustic elements to acquire ultrasound data using a sequence of transmit-receive pairs, generates a B-mode image using the acquired ultrasound data, forms a plurality of sub-apertures comprising a portion of the transmit-receive pairs, groups the sub-apertures into temporally-spaced ensembles, determines a flow estimate based on a comparison of at least one of sub-apertures within an ensemble, ensembles within an aperture, or different apertures, and outputs a graphical representation of the B-mode image and the flow estimate to a display.

    GRATING LOBES REDUCTION FOR ULTRASOUND IMAGES AND ASSOCIATED DEVICES, SYSTEMS, AND METHODS

    公开(公告)号:US20220354465A1

    公开(公告)日:2022-11-10

    申请号:US17867997

    申请日:2022-07-19

    Abstract: Improved ultrasound imaging devices and methods of operating the devices that minimize grating lobe artifacts in an ultrasound image are provided. For example, an ultrasound imaging system analyzes the ultrasound data at different frequency bands and generates a grating-lobe-minimized image based on minimum signals identified for each pixel among the plurality of frequency ranges. In one embodiment, an ultrasound imaging system includes an ultrasound transducer array configured to obtain ultrasound data, and a processor in communication with the ultrasound transducer array. The processor is configured to receive the ultrasound data, generate an ultrasound image based on a first frequency range of the ultrasound data, generate a grating-lobe-minimized ultrasound image based on a plurality of second frequency ranges of the ultrasound data, combine the ultrasound image and the grating-lobe-minimized ultrasound image to generate a combined ultrasound image, and output the combined ultrasound image to a display.

    GRATING LOBES REDUCTION FOR ULTRASOUND IMAGES AND ASSOCIATED DEVICES, SYSTEMS, AND METHODS

    公开(公告)号:US20200077984A1

    公开(公告)日:2020-03-12

    申请号:US16560727

    申请日:2019-09-04

    Abstract: Improved ultrasound imaging devices and methods of operating the devices that minimize grating lobe artifacts in an ultrasound image are provided. For example, an ultrasound imaging system analyzes the ultrasound data at different frequency bands and generates a grating-lobe-minimized image based on minimum signals identified for each pixel among the plurality of frequency ranges. In one embodiment, an ultrasound imaging system includes an ultrasound transducer array configured to obtain ultrasound data, and a processor in communication with the ultrasound transducer array. The processor is configured to receive the ultrasound data, generate an ultrasound image based on a first frequency range of the ultrasound data, generate a grating-lobe-minimized ultrasound image based on a plurality of second frequency ranges of the ultrasound data, combine the ultrasound image and the grating-lobe-minimized ultrasound image to generate a combined ultrasound image, and output the combined ultrasound image to a display.

    TARGET PROBE PLACEMENT FOR LUNG ULTRASOUND
    9.
    发明申请

    公开(公告)号:US20200060642A1

    公开(公告)日:2020-02-27

    申请号:US16466311

    申请日:2017-12-08

    Abstract: The present disclosure describes an ultrasound imaging system configured to identify a target placement of an ultrasound probe for viewing a lung pleural line. In some examples, the system may include an ultrasound probe configured to receive ultrasound echoes from a subject to image a region of the subject and a data processor in communication with the ultrasound probe. The data processor may be configured to identify one or more candidate pleural lines and one or more A-lines corresponding to the candidate pleural lines, compute an A-line intensity of at least one of the A-lines, and apply the computed A-line intensity to indicate a target placement of the ultrasound probe for imaging the region for pleural line identification. The system may also include a user interface in communication with the data processor. The user interface may be configured to alert the user of the target placement of the ultrasound probe.

Patent Agency Ranking