Abstract:
An optical alignment device using pulse UV irradiates an alignment film with pulse UV to perform optical alignment of liquid crystal. The optical alignment device using pulse UV may include a chamber, a lamp which is installed at an upper portion of the chamber and emits pulse UV light, a stage which is provided at a lower portion of the chamber and on which a substrate having an alignment film formed on a surface thereof is placed, and a polarizer which is installed detachably between the stage and the lamp.
Abstract:
The present invention relates to a method for manufacturing a patterned retarder including an optical alignment layer or a first domain optically aligned in a first direction and a second domain optically aligned in a second direction. According to the invention, it is possible to improve productivity and to maximize optical alignment efficiency by reducing an optical alignment processing time using polarized pulse UV.
Abstract:
An optical alignment device using pulse UV irradiates an alignment film with pulse UV to perform optical alignment of liquid crystal. The optical alignment device using pulse UV may include a chamber, a lamp which is installed at an upper portion of the chamber and emits pulse UV light, a stage which is provided at a lower portion of the chamber and on which a substrate having an alignment film formed on a surface thereof is placed, and a polarizer which is installed detachably between the stage and the lamp.
Abstract:
The present invention relates to a method for manufacturing a patterned retarder including an optical alignment layer or a first domain optically aligned in a first direction and a second domain optically aligned in a second direction. According to the invention, it is possible to improve productivity and to maximize optical alignment efficiency by reducing an optical alignment processing time using polarized pulse UV.
Abstract:
The present invention relates to an infrared blocking multi-layered insulating film having thermal anisotropy, the film comprising an infrared absorption layer comprising at least one of perovskite oxide dispersed sol, metallic oxide dispersed sol, and ITO or ATO; a thermal resistance layer located on or above one surface of the infrared absorption layer; and an emission layer located on or above another surface of the infrared absorption layer. An infrared blocking multi-layered insulating film having thermal anisotropy according to the present invention may control heat flow, thereby generating excellent insulating effect.