Abstract:
A RNA/DNA nanoparticle for delivering siRNA where a RNA transcript including at least one hairpin structure hybridizes DNA-cholesterol conjugate and folate-DNA conjugate including a complementary sequence to the RNA transcript, and a composition including the RNA/DNA nanoparticle is provided. More specifically, because various siRNA used for different applications can be contained in the RNA/DNA nanoparticle for delivering siRNA at a high loading efficiency, and has stability to the outer attacks such as nuclease degradation. The RNA/DNA nanoparticle siRNA can be prepared by self-assembly without using polycationic agent which is harmful agent for body. The folate targeting to various cancer cells can accumulate the nanoparticle selectively on target cancer cell after intravenous injection, and make excellent gene-silencing effect inside the cancer tissue, thereby being used as a good agent for treating cancers.
Abstract:
The present invention relates to a viral complex comprising a viral vector capable of delivering shRNA that suppresses an expression of epidermal growth factor receptor (EGFR) to a cell and an anti-epithelial cell adhesion molecule (EpCAM) antibody conjugated to the viral vector, a pharmaceutical composition for preventing or treating cancer, comprising the viral complex, and a method for treating cancer, comprising administering the viral complex or the pharmaceutical composition to a subject in which a cancer disease has occurred and overexpressing EpCAM. The anti-EpCAM antibody-AAV2/shEGFR complex provided in the present invention significantly reduces the expression level of EGFR in tumor cells overexpressing EpCAM without inducing an immune response in vivo, thereby inducing death of tumor cells, and thus, it can be widely utilized in more effective and safe cancer treatment.
Abstract:
The present invention relates to a method of treating a cancer including administering a pharmaceutical composition to an individual suspected to have the cancer excluding humans in a pharmaceutically effective amount, where the pharmaceutical composition comprises an agent capable of inhibiting expression of kinesin spindle protein (KSP) and a mitosis inhibitor.