Abstract:
An optical sensor is disclosed. Each sensor pixel circuit of the optical sensor includes a first readout TFT for reading out voltage of a charge node, a second readout TFT for controllably resetting the charge node to a first reset voltage, and a photo TFT for discharging the voltage at the charge node to a second reset voltage in absence of an object(s).
Abstract:
A source driver of an LCD includes a first and second power sources, a first and second inversion units, a first and second charging switches, and a first and second discharging switches. The first charging switch is coupled to the first power source, a first end of the first inversion unit, and a second end of the second inversion unit. The second charging switch is coupled to the first power source, a first end of the second inversion unit, and a second end of the first inversion unit. The first discharging switch is coupled to the second power source, the second end of the first inversion unit, and the first end of the second inversion unit. The second discharging switch is coupled to the second power source, the second end of the second inversion unit, and the first end of the first inversion unit.
Abstract:
A pixel driver includes an image signal module, a data latch module, a level shifter module, and a format conversion module, wherein the format conversion module includes at least one first conversion unit and a second conversion unit. The data latch module stores the digital signal generated by the image signal module temporarily and then transmits the digital signal to the level shifter module. The level shifter module increases the voltage of the digital signal and then transmits the digital signal to the format conversion module, wherein the conversion units generate analogue signals based on the digital signal received to drive different pixel units.
Abstract:
A readout apparatus for a current type touch panel is provided. The readout apparatus includes a current-to-voltage converter, a voltage gain unit and an analog-to-digital converter (ADC). The current-to-voltage converter converts a sensing current of the current type touch panel to a sensing voltage. The current-to-voltage converter includes a resistor and a current mirror. The resistor has a first end and a second end. The current mirror has a master current end and a slave current end. An input end of the voltage gain unit is coupled to an output end of the current-to-voltage converter for receiving the sensing voltage. An input end of the ADC is coupled to an output end of the voltage gain unit. An output end of the ADC generates a digital code.
Abstract:
A source driver of an LCD includes a first and second power sources, a first and second inversion units, a first and second charging switches, and a first and second discharging switches. The first charging switch is coupled to the first power source, a first end of the first inversion unit, and a second end of the second inversion unit. The second charging switch is coupled to the first power source, a first end of the second inversion unit, and a second end of the first inversion unit. The first discharging switch is coupled to the second power source, the second end of the first inversion unit, and the first end of the second inversion unit. The second discharging switch is coupled to the second power source, the second end of the second inversion unit, and the first end of the first inversion unit.
Abstract:
A sensor pixel and a touch panel using the same are provided herein, wherein the touch panel has m scan lines and n readout lines. The sensor pixel includes a sensing capacitor, a readout transistor, a reset transistor, a base transistor, and a photo transistor. The photo transistor included in the sensor pixel produces a photo leakage current when it is exposed to a light. The light obstruction characteristic of the photo transistor is utilized to detect the locations of the touched sensor pixels. By proper timing control, the present invention not only can be applied to the multi-finger detection, but also is easy to be implemented.
Abstract:
A system of driving a touch screen comprises a touch sensitive panel including a plurality of first sensor lines parallel to a first direction and a plurality of second sensor lines parallel to a second direction, a driving circuit coupled with the first sensor lines, a first sensing circuit, and a controller coupled with the first sensing circuit. The driving circuit is configured to sequentially apply a first scanning signal through each of the first sensor lines. The first sensing circuit can report a plurality of first response signals that are transmitted through the second sensor lines in response to each applied first scanning signal. The controller can identify one or more touch location based on the first response signals reported by the first sensing circuit, and track each identified touch location. In other embodiments, methods of driving a touch screen are also described.
Abstract:
A readout circuit for touch panel includes first and second switches, an operational amplifier (OP-AMP), a feedback capacitor, a comparison unit, and a counter. A first input terminal and an output terminal of the OP-AMP are respectively coupled to a second terminal of the first switch and an input terminal of the comparison unit. A second input terminal of the OP-AMP receives a reference voltage. Two terminals of the feedback capacitor and the second switch are respectively coupled to the first input terminal and the output terminal of the OP-AMP. The comparison unit selects first or second threshold voltages to compare with an output of the OP-AMP according to a output of the comparison unit. An input terminal of the counter receives the output of the comparison unit.
Abstract:
A sensor with pressure-induced varied capacitance is disclosed. Each sensor pixel circuit of the sensor includes a touch capacitor, a charge TFT for storing charge at the touch capacitor according to a previous scan line, and a readout TFT for reading out voltage across the touch capacitor according to a present scan line.
Abstract:
A readout apparatus and a multi-channel readout apparatus for a touch panel are provided to integrate different types of readout circuit. The readout apparatus set to a first mode reads the touch panel with a small amount of charges through an integrator. The readout apparatus set to a second mode reads a sensing current of a current type touch panel through a current to voltage converting unit and an inverting amplifier, so as to save a chip area. The multi-channel readout apparatus set to a third mode applies multiple channels to alternatively share an integrator to read the touch panel with a large amount of charges, so that an amount of feedback capacitors (integral capacitors) having a great area can be greatly reduced. Therefore, readout apparatus of the present invention can not only reduce a chip area, but can also be applied to various types of the touch panel.