Abstract:
An electric vehicle steering/drive control method and apparatus having predetermined steering modes defining composite patterns of individual wheel travel paths, whereby the vehicle wheels are controlled independently. The steering modes are determined by different condition equations related to each composite pattern. A steering mode select signal is generated based on a mode selection by a vehicle driver. The steering mode select signal is received by a wheel steering angle computer and a wheel rotation speed computer. Based in part on the steering mode select signal, the wheel steering angle computer generates a signal that is received by a steering motor controller, which in turn controls motors that change the steering angle of the wheels. An actual angle sensor generates a signal based on the actual angle of the wheels and a steering angle comparator receives the actual angle sensor signal. In addition, to move the vehicle in a particular direction and at a particular speed, a speed and direction command signal is also generated based on driver input. This speed and direction command signal is received by a common signal rate of change suppression computer, which generates a signal received by the wheel steering angle computer and a wheel rotation speed computer. Then the wheel rotation speed computer generates a signal based on signals received from the common signal rate of change suppression computer and the steering angle comparator computer. A drive motor controller receives the wheel rotation speed signal and activates drive motors associated with each wheel, thereby causing the wheels to move rotationally.