摘要:
Development of a multiple-core optical connector which can make multiple-core or a plurality of optical fibers connected in a simple manner has been sought. There are provided an optical connector ferrule for internally fixing beforehand the optical fibers arranged in parallel on an identical plane and having joining end surface of a tip which is polished, and an optical connector which is furnished with a connecting mechanism for maintaining a connected state by holding aforementioned optical connector which protrudes from the rear end, facing the aforementioned joining end surface of the aforementioned connector ferrule and a separate optical fiber connected by abutting against the optical fiber of the optical connector ferrule side.
摘要:
In an optical connector structured having an optical connector ferrule accommodated in a housing urged towards the butt connection direction by an urging means, a technology is developed wherein the application of an external sideways force to the optical connector ferrule in a connected state is prevented, and the connected state is stably maintained. An optical connector 20 is provided wherein a positioning support part 24 which accommodates and supports a freely detachably a stop guard 26, which projects from the optical fiber ferrule 2, is provided in a housing 21; when this optical connector ferrule 2 is moved towards the butt connection direction, the stop guard is accommodated in the positioning support part 24 and positioned and supported; and when this stop guard 26 is released from the positioning support part 24, floating of the optical connector ferrule 2 in the housing 2 is permitted. Thereby, even if a sideways pressure is applied to the housing 21, a displacing force is not applied to the optical connector ferrule 2, and the butt connection state with the other optical connector ferrule is not affected.
摘要:
An optical connector is provided where an biasing device 26 which biases a ferrule 24 having an optical fiber 22 secured thereinside and a tip end face 23 which has been polished, in a tip end face 23 direction, is located to the rear of a connection mechanism 25 for connecting the optical fiber 22 on the ferrule 24 side and a separately inserted optical fiber 22a, at a rear end side of the ferrule 24 opposite to the front end face 23. The connection mechanism 25 has a construction which uses a mechanical splice, and is opened and closed by a release member inserted into an insertion opening 39 which is opened along an alignment axis direction. Hence the opening and closing operation does not interfere with the biasing device 26, so that operability is improved. Moreover, for this type optical connector there is provided an optical connector housing 21 which accommodates the ferrule. With this optical connector housing 21, by merely inserting the ferrule, the connection mechanism 25 for connecting the pair for optical fibers at the rear end side of the ferrule, and the stop ring 27 accommodating the connection mechanism 25, then assembly can be simply performed so that workability in assembling the optical connector is improved.
摘要:
An optical ferrule is disclosed in which a concave portion 17c having a gate G in resin molding disposed therein is formed in a ferrule body 11. According to this constitution, it is possible to easily cut a flash 10 left after a gate of the concave portion 17c of the ferrule body 11 is cut after molding with a gate cutter, so that, when the ferrule body 11 is fitted in a housing of an MPO connector and the like, the problem that the flash 10 protrudes from the concave portion 17c and the flash 10 hitching to an inner wall of the housing dose not occur. Accordingly, the labor required for removing the flash 10 by polishing can be eliminated, and hence productivity of the ferrule body 11 can be improved. Thus, a large number of ferrule bodies 11 can be automatically manufactured without requiring much manpower.
摘要:
When a carrier arm is retracted, a semiconductor wafer carried thereon passes between three light-emitting elements and three light-detecting elements associated therewith. At this time, a controller determines six points on the outer circumferential edge of the semiconductor wafer based on signals from sensors made up of the light-emitting elements and the light-detecting elements. The controller selects three of the determined points, determines the center of a circumscribed circle passing through the selected three points, and regards the determined center as the center of the semiconductor wafer. Then, the controller controls movement of the semiconductor wafer toward a rotary-cup coating device, an evacuating drying device, or an edge cleaning device based on the center of the semiconductor wafer.