摘要:
A scanning optical apparatus includes a light source device, a first optical element for converting a beam emitted from the light source device to a converging light beam, a deflecting element for deflecting the beam emitted from the light source device, a second optical element for focusing the beam emerging from the first optical element in a linear shape longitudinal in a main scanning direction on a deflective face of the deflecting element, and a third optical element for focusing the beam deflected by the deflecting element in a spot shape on a scanned surface. The third optical element has a spherical lens and a toric lens in order from the side of the deflecting element, surfaces of the spherical lens comprise a meniscus shape of positive refracting power with a concave surface faced toward the deflecting element, and the toric lens has two lens surfaces formed in aspherical shapes in a main scanning section and comprising a meniscus shape of positive refracting power with a convex surface faced toward the deflecting element in the vicinity of a center of scan.
摘要:
An optical scanning apparatus in which the luminous flux emitted from a light source is deflected by a deflecting device and formed by an optical device into a spot-shaped image on a plane to be scanned. The optical device has first and second toric lenses. The first toric lens has both lens surfaces formed into aspherical shapes in the main scanning cross section and has a meniscus shape in which a concave surface faces the deflecting device in the vicinity of the center of scanning and which provides a positive refractive power. The second toric lens has both lens surfaces formed into aspherical shapes in the main scanning cross section and has a meniscus shape in which a convex surface faces the deflecting device in the vicinity of the center of scanning and which provides a positive refractive power. Sections of the toric lenses perpendicular to a generating line in a sub-scanning cross section both have meniscus shapes which provide concave surfaces facing the deflecting device and which provide a positive refractive power.
摘要:
A scanning optical apparatus includes a light source, deflector for deflecting a light beam emitted from the light source, and optical device for directing the light beam emitted from the light source onto a surface to be scanned. The optical device includes a diffracting optical element. An aberration fluctuation in a sub-scanning direction resulting from environmental fluctuation of the scanning optical apparatus is corrected by the characteristic of the optical device.
摘要:
A zoom lens system comprising: a first lens unit having positive optical power; a second lens unit having positive optical power; and at least one subsequent lens unit, wherein the zoom lens system has an image blur compensating lens unit which moves in a direction perpendicular to an optical axis, at least the first lens unit moves along the optical axis at the time of zooming from a wide-angle limit to a telephoto limit, the second lens unit or a third lens unit which is located closest to the object side in the at least one subsequent lens unit moves along the optical axis at the time of focusing from an infinity in-focus condition to a close-object in-focus condition, and the condition: 0.10
摘要:
An image-taking apparatus is disclosed which is capable of adjusting a positional displacement of an image-taking optical system and an image-pickup element even in a state in which they are fixed. The image-taking apparatus includes the image-taking optical system including an offset lens unit movable in a direction orthogonal to an optical axis, the image-pickup element and a memory which stores adjustment data. The adjustment data is data on a movement amount of the offset lens unit to make light amounts in peripheral parts on the image-pickup element substantially homogeneous in a case where an object has a surface with approximately homogeneous luminance.
摘要:
A zoom lens system is disclosed, comprising, in order from an object side to an image side, a first lens unit with a positive refractive power, a second lens unit with a negative refractive power, a third lens unit with a positive refractive power, and a fourth lens unit with a positive refractive power, wherein a distance between the respective lens units is changed during zooming. The third lens unit consists of, in order from the object side to the image side, a first lens sub-unit including a positive lens with an object-side surface which has a convex shape and having a positive refractive power, an aperture stop, a second lens sub-unit including a negative lens and having a negative optical power, and a third lens sub-unit including a positive lens and having a positive optical power.
摘要:
Provided is a zoom lens system which includes a plurality of lens units separated from one another at intervals changed during at least one of zooming and focusing and an aperture stop. The plurality of lens units include a movable lens unit for displacing an image formed by the zoom lens system within a plane perpendicular to an optical axis. The movable lens unit includes a first lens subunit located on an object side of the aperture stop and a second lens subunit located on an image side of the aperture stop. When the image formed by the zoom lens system is displaced within the plane perpendicular to the optical axis, the aperture stop is held and the first lens subunit and the second lens subunit are moved to have a component in a direction orthogonal to the optical axis.
摘要:
A zoom lens, including, in order from an object side to an image side (a) a first lens unit of negative optical power, (b) a second lens unit of positive optical power, and (c) a third lens unit of positive optical power, wherein a separation between the first lens unit and the second lens unit and a separation between the second lens unit and the third lens unit are varied to effect variation of magnification, and wherein, during the variation of magnification from a wide-angle end to a telephoto end with an infinitely distant object focused on, the third lens unit moves monotonically toward the image side or moves with a locus convex toward the image side.
摘要:
A zoom lens is constructed with, in order from an object side to an image side, a first lens unit of negative optical power, the first lens unit including a negative meniscus lens having a concave surface facing the image side and a positive meniscus lens having a convex surface facing the object side, a second lens unit of positive optical power, the second lens unit including a cemented lens of positive optical power as a whole disposed on the most image side of the second lens unit, and a lens having a concave surface facing the image side and adjoining a surface on the object side of the cemented lens, and a third lens unit of positive optical power, wherein a separation between the first lens unit and the second lens unit and a separation between the second lens unit and the third lens unit are varied to effect variation of magnification.
摘要:
In a variable magnification viewfinder of real image type in which an object image formed by an objective lens system of positive refractive power is converted into an erecting image by an image inverting optical system and the erecting image is observed through an eyepiece lens system, the objective lens system includes, in order from the object side, a negative first lens unit, a negative second lens unit and a positive third lens unit, and, during variation of magnification from the lowest magnification side to the highest magnification side, both the second lens unit and the third lens unit move toward the object side monotonically, so that a good optical performance throughout the entire range of variation of magnification can be attained.