摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
Embodiments of the portable antenna positioner described provide a lightweight, collapsible and rugged antenna positioner for use in receiving low earth orbit, geostationary and geosynchronous satellite transmissions. By collapsing the antenna positioner, it may be readily carried by one person or shipped in a compact container. The antenna positioner may be used in remote locations with simple or automated setup and orientation. In order to operate the apparatus, azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. The apparatus may update ephemeris data via satellite, may comprise a built-in receiver and may couple with a second positioner base comprising cryptographic, router or power functionality. The apparatus may comprise storage devices such as a hard drive or flash disk for storing data to and from at least one satellite.
摘要:
Embodiments of the portable antenna positioner described provide a lightweight, collapsible and rugged antenna positioner for use in receiving low earth orbit, geostationary and geosynchronous satellite transmissions. By collapsing the antenna positioner, it may be readily carried by one person or shipped in a compact container. The antenna positioner may be used in remote locations with simple or automated setup and orientation. In order to operate the apparatus, azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. The apparatus may update ephemeris data via satellite, may comprise a built-in receiver and may couple with a second positioner base comprising cryptographic, router or power functionality. The apparatus may comprise storage devices such as a hard drive or flash disk for storing data to and from at least one satellite.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
A low power, lightweight, collapsible and rugged antenna positioner for use in communicating with geostationary, geosynchronous and low earth orbit satellite. By collapsing, invention may be easily carried or shipped in a compact container. May be used in remote locations with simple or automated setup and orientation. Azimuth is adjusted by rotating an antenna in relation to a positioner base and elevation is adjusted by rotating an elevation motor coupled with the antenna. Manual orientation of antenna for linear polarized satellites yields lower weight and power usage. Updates ephemeris or TLE data via satellite. Algorithms used for search including Clarke Belt fallback, transponder/beacon searching switch, azimuth priority searching and tracking including uneven re-peak scheduling yield lower power usage. Orientation aid via user interface allows for smaller azimuth motor, simplifies wiring and lowers weight. Tilt compensation, bump detection and failure contingency provide robustness.
摘要:
An electrical control device for controlling the status of a controlled electrical device, the electrical control device comprising a power conducting semiconductor device for controlling the status of the controlled electrical device; a control circuit; a transmitter and/or receiver in communication with the control circuit; and an antenna coupled to the transmitter and/or receiver; the antenna adapted to receive a first signal at a specified frequency from a remote control device and/or transmit a second signal at a specified frequency to a remote control device; wherein the transmitter is operable to couple the first signal from the antenna to the control circuit for remotely controlling the controllably conductive device and/or couple the second signal from the control circuit for providing a status of said controlled electrical device, the antenna comprising a first loop of conductive material having a capacitance and an inductance; the capacitance and the inductance forming a circuit being resonant at the specified frequency; a second loop of conductive material having two ends adapted to be electrically coupled to a control circuit, the second loop being substantially only magnetically coupled to the first loop; the first and second loops each having a loop axis, the loop axes of the first and second loops being substantially parallel or coincident.