摘要:
A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
摘要:
A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
摘要:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
摘要:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
摘要:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
摘要:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
摘要:
It has been discovered that sequential polyperoxides can be beneficially used as initiators for vinylaromatic/diene copolymers to give high grafting values and reasonable molecular weights. A new cyclic diperoxide did not give these same results. The sequential polyperoxide initiators can be used as the only initiators or together with other conventional peroxide initiators to advantage. The polymerization rate can also be increased using these sequential polyperoxide initiators.