摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals. The algorithm further allows the TDM of multiple terminals in a TDMA burst to minimize the number of map entries in a downlink map. The algorithm limits the number of downlink map entries to not exceed 2n+1, where n is the number of DL PHY modes (modulation/FEC combinations) employed by the communication system.
摘要:
A method and system for prioritizing connection data that is associated with different classes of service for transmission in a frame based communication system. These classes of service can include CBR, nrt-VBR, MGR, and UPR traffic. One embodiment of the scheduling method and system uses hierarchical round-robin (HRR) with deficit round-robin (DRR). In this embodiment, the scheduling method and system guarantees minimum rates of nrt-VBR and MGR traffic to the connections. The excess bandwidth is then fairly allocated between the existing connections and their classes of service. For example, the excess is allocated for UBR traffic and for the excess demands of the nrt-VBR and MGR connections. In one embodiment, the scheduling method and system allocates the excess bandwidth in a frame to the existing connections using weighted round robin to differentiate between different classes of service. In one embodiment, excess allocation to nrt-VBR and MGR connections is rolled back into the deficit counters for the minimum guaranteed rates of nrt-VBR and MGR connections.
摘要:
A method and system for prioritizing connection data that is associated with different classes of service for transmission in a frame based communication system. These classes of service can include CBR, nrt-VBR, MGR, and UBR traffic. One embodiment of the scheduling method and system uses hierarchical round-robin (HRR) with deficit round-robin (DRR). In this embodiment, the scheduling method and system guarantees minimum rates of nrt-VBR and MGR traffic to the connections. The excess bandwidth is then fairly allocated between the existing connections and their classes of service. For example, the excess is allocated for UBR traffic and for the excess demands of the nrt-VBR and MGR connections. In one embodiment, the scheduling method and system allocates the excess bandwidth in a frame to the existing connections using weighted round robin to differentiate between different classes of service. In one embodiment, excess allocation to nrt-VBR and MGR connections is rolled back into the deficit counters for the minimum guaranteed rates of nrt-VBR and MGR connections.
摘要:
A method and system for prioritizing connection data that is associated with different classes of service for transmission in a frame based communication system. These classes of service can include CBR, nrt-VBR, MGR, and UBR traffic. One embodiment of the scheduling method and system uses hierarchical round-robin (HRR) with deficit round-robin (DRR). In this embodiment, the scheduling method and system guarantees minimum rates of nrt-VBR and MGR traffic to the connections. The excess bandwidth is then fairly allocated between the existing connections and their classes of service. For example, the excess is allocated for UBR traffic and for the excess demands of the nrt-VBR and MGR connections. In one embodiment, the scheduling method and system allocates the excess bandwidth in a frame to the existing connections using weighted round robin to differentiate between different classes of service. In one embodiment, excess allocation to nrt-VBR and MGR connections is rolled back into the deficit counters for the minimum guaranteed rates of nrt-VBR and MGR connections.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals. The algorithm further allows the TDM of multiple terminals in a TDMA burst to minimize the number of map entries in a downlink map. The algorithm limits the number of downlink map entries to not exceed 2n+1, where n is the number of DL PHY modes (modulation/FEC combinations) employed by the communication system.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals. The algorithm further allows the TDM of multiple terminals in a TDMA burst to minimize the number of map entries in a downlink map. The algorithm limits the number of downlink map entries to not exceed 2n+1, where n is the number of DL PHY modes (modulation/FEC combinations) employed by the communication system.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals. The algorithm further allows the TDM of multiple terminals in a TDMA burst to minimize the number of map entries in a downlink map. The algorithm limits the number of downlink map entries to not exceed 2n+1, where n is the number of DL PHY modes (modulation/FEC combinations) employed by the communication system.
摘要:
A system and method for mapping a combined frequency division duplexing (FDD) Time Division Multiplexing (TDM)/Time Division Multiple Access (TDMA) downlink subframe for use with half-duplex and full-duplex terminals in a communication system. Embodiments of the downlink subframe vary Forward Error Correction (FEC) types for a given modulation scheme as well as support the implementation of a smart antennae at a base station in the communication system. Embodiments of the system are also used in a TDD communication system to support the implementation of smart antennae. A scheduling algorithm allows TDM and TDMA portions of a downlink to efficiently co-exist in the same downlink subframe and simultaneously support full and half-duplex terminals. The algorithm further allows the TDM of multiple terminals in a TDMA burst to minimize the number of map entries in a downlink map. The algorithm limits the number of downlink map entries to not exceed 2n+1, where n is the number of DL PHY modes (modulation/FEC combinations) employed by the communication system.