摘要:
A fully automated telescope system is able to be fully operable in both Alt-Az and polar configurations. In either configuration, the telescope aligns itself to be celestial coordinate system following a simplified initialization procedure during which the telescope tube is first pointed north and then pointed towards a user's horizon. A command processor, under application software program control orients the telescope system with respect to the celestial coordinate system given the initial directional inputs. The initial telescope orientation may be further refined by initially inputting a geographical location indicia, or by shooting one or two additional celestial objects. Once the telescope's orientation with respect to the celestial coordinate system is established, the telescope system will automatically move to and track any desired celestial object without further alignment invention by a user.
摘要:
A telescope system facilitates easy upgrading from friction lock mounting to manual worm drive, and from manual worm drive to motor drive. Vibration isolation provides a steady field of view for enhanced observation and photography. A telescope mount facilitates enhanced below the horizon and zenith viewing. A tripod has detents which hold the legs thereof in a deployed position during handling of the tripod. A cam lock reliably maintains a desired length of telescoping tripod legs. An X-Y adjustable finder scope facilitates easy alignment thereof with the telescope
摘要:
A telescope system has an intelligent motor controller for accurately controlling telescope position to facilitate location of celestial objects and to precisely control the speed at which the telescope moves to facilitate tracking of celestial objects. An optical encoder utilizes two photodetectors to provide enhanced servo control of the telescope positioning motors, a calibration circuit eliminates a need to test LED's during assembly of the optical encoder and a brushless mount provides electrical communication to an altitude drive motor located in a fork thereof in a manner which mitigates problems due to undesirable wrapping of an electrical cable around the mount as the mount rotates in azimuth.
摘要:
An automated telescope includes an optical system and respective altitude and azimuth motor systems. Each motor system is configured to rotate the optical system about a corresponding altitude or azimuth axis. Each of the altitude and azimuth motor systems includes a motor and a microprocessor configured to control its respective motor. A third microprocessor is connected to microprocessors of both the altitude and azimuth motor systems. The third microprocessor is programmed to determine a relationship between a celestial coordinate system and an altitude-azimuth coordinate system and to generate motion control commands based at least in part on the determined relationship. Each microprocessor of the altitude and azimuth motor systems then controls its respective motor based at least in part on the motion control commands.
摘要:
Embodiments of the present disclosure include self-aligning telescope control systems and self-alignment methods. In an embodiment, a telescope control system orients a telescope with respect to the celestial sphere by pointing the telescope in the direction of an alignment star or alignment area of the sky. The telescope control system images a field of view in the alignment area, and processes the images to determine the celestial coordinates of a center of the filed a field of view the alignment area. The telescope control system then maps the telescope's coordinate system to the celestial coordinate system. Once mapped, the telescope control system can advantageously slew the telescope to any desired celestial object in the viewable sky based on, for example, user selection, system recommendations, combinations of the same, or the like.
摘要:
Apparatus and methods are disclosed that enable a device to locate and track a light source. In certain preferred embodiments, the device is a telescope and the light source is the sun. In some embodiments, the apparatus includes a plurality of photodetectors and a plurality of shade casting members. The shade casting members may be disposed substantially symmetrically about an optical axis of the apparatus. In certain embodiments, the apparatus can locate and track the light source by comparing one or more signals produced by the photodetectors in response to light received from the light source.
摘要:
Embodiments of an automated telescope system are operable in multiple modes, including alt-az and equatorial modes. The telescope system aligns and orients itself to the celestial coordinate system using, for example, data gained through tracking the drift of a celestial object. In various embodiments, an imager may be used to find and track celestial objects.
摘要:
Embodiments of the present disclosure include presenting data related to image information captured by a telescope on an electronic display, such as, for example, a high definition display. For example, a telescope control system may advantageously output video or other signals to one or more displays in a multi-media or image presentation. In certain preferred embodiments, such display comprises high definition displays, or the like. For example, such display may comprise entertainment, academic or other presentations.
摘要:
A fully automated telescope system is able to be fully operable in both Alt-Az and polar configurations. In either configuration, the telescope aligns itself to the celestial coordinate system following a simplified initialization procedure during which the telescope tube is first pointed north and then pointed towards a user's horizon. A command processor, under application software program control orients the telescope system with respect to the celestial coordinate system given the initial directional inputs. The initial telescope orientation may be further refined by initially inputting a geographical location indicia, or by shooting one or two additional celestial objects. Once the telescope's orientation with respect to the celestial coordinate system is established, the telescope system will automatically move to and track any desired celestial object without further alignment invention by a user.
摘要:
Embodiments of the present disclosure include self-aligning telescope control systems and self-alignment methods. In an embodiment, a telescope control system orients a telescope with respect to the celestial sphere by pointing the telescope in the direction of an alignment star or alignment area of the sky. The telescope control system images a field of view in the alignment area, and processes the images to determine the celestial coordinates of a center of the filed a field of view the alignment area. The telescope control system then maps the telescope's coordinate system to the celestial coordinate system. Once mapped, the telescope control system can advantageously slew the telescope to any desired celestial object in the viewable sky based on, for example, user selection, system recommendations, combinations of the same, or the like.