摘要:
To improve the scanning effect, a scanning method is provided, which comprises the steps of performing at least one of an nCT scan and a CTA scan on an object so as to obtain a set of images; detecting characteristics of a region of interest based on the set of images; and performing a CTP scan on the region of interest by adopting the characteristics to obtain a CTP image. By deriving the characteristics of the region of interest, e.g. a lesion or an area covering the lesion, before performing the CTP scan, and by adapting the subsequent CTP scan based on the characteristics of the region of interest, the drawback introduced by a limited scan area of the CTP scanner is mitigated, or even overcome.
摘要:
A system for handling a specimen image is disclosed. An image input (1) is configured to receive a body image representing at least a portion of a living body and a specimen image representing a dissected portion of the living body. An alignment unit (2) is configured to compute an alignment of the specimen image with the body image, based on image content of the specimen image and/or the body image. A border detector (3) is operatively connected to the alignment unit (2) and configured to detect at least part of an outer border of the dissected portion in the specimen image.
摘要:
To improve the scanning effect, a scanning method is provided, which comprises the steps of performing at least one of an nCT scan and a CTA scan on an object so as to obtain a set of images; detecting characteristics of a region of interest based on the set of images; and performing a CTP scan on the region of interest by adopting the characteristics to obtain a CTP image. By deriving the characteristics of the region of interest, e.g. a lesion or an area covering the lesion, before performing the CTP scan, and by adapting the subsequent CTP scan based on the characteristics of the region of interest, the drawback introduced by a limited scan area of the CTP scanner is mitigated, or even overcome.
摘要:
A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
摘要:
The invention relates to automatically adjusting an acquisition protocol for dynamic medical imaging, such as dynamic CT, MRI or PET imaging. The protocols are adjusted based on anatomic and dynamic models (10, 12, 14) which are individualized or fitted to each patient based on a scout scan (6, 8). The adjustment can compensate for changes in the patient due to patient motion (e.g. breathing or heartbeat) or flow of contrast or tracing agent during the sequence. This ensures that changes in the reconstructed images are indicative of pathological changes in the patient and not caused by patient motion or changes in scanning parameters or timing. The dynamic model can be a motion model (12) used to predict the motion of anatomic/physiologic features, typically organs, during scanning, or a haemodynamic model (14) used to predict flow of the contrast agent allowing for precise timing of the scanning sequence.
摘要:
An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1 B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.
摘要:
When treating a patient, clinical decision support system (CDSS) guidelines are employed to assist a physician in generating a treatment plan. These plans are generated using both imaging and non-imaging data. To accomplish this, the CDSS is interfaced with imaging systems (CADx, CAD, PACS etc.). A data-mining operation is performed to identify relevant patients with similar attributes such as diagnosis, medical history, treatment, etc from imaging and non-imaging data. Natural language processing is employed to extract and encode relevant non-imaging (textual) data from relevant patients' records. Additionally, an image of a current patient is compared to reference images in a patient database to identify relevant patients. Relevant patients are then identified to a user, and the user selects a relevant patient to view detailed information related to medical history, treatment, guidelines, efficacy, and the like.
摘要:
A point-based elastic registration method for registering a first image and a second image. Initially, a single control point is randomly placed (S2) with the source image region and optimal parameter settings in respect thereof are determined (S3) for performing elastic deformation (S4) in respect of the first image so as to optimise a similarity measure. Additional control points are then added (S6) one-by-one, and the elastic deformation process repeated each time (S8) in respect of the new control point set, until a predetermined stopping criterion is met, e.g. the resultant improvement in the similarity measure no longer exceeds some predetermined threshold value. Thus, a high speed, high quality registration method is provided without having to specify the number of control points initially.
摘要:
An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1, B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.
摘要:
A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).