摘要:
The current in a conductor is measured by exploiting the Faraday effect in a sensing fiber. The light returning from the sensing fiber is split into at least two parts, at least one of which is analyzed by a first circular analyzer for generating a first signal. A second part may e.g. be analyzed by a second circular analyzer, and a third part may be analyzed by a linear analyzer. By combining the signals obtained in this way, the current induced phase delay in the returning light can be measured efficiently and accurately.
摘要:
The invention relates to a fiberoptic current or magnetic field sensor having a plurality of sensor heads, and to a corresponding measurement method. The sensor has a light source: N≧2 sensor heads; at least one phase modulation unit; a detector; a control and evaluation unit. The at least one phase modulation unit is connected to at least one of the sensor heads. Lightwaves can be differentially phase-modulated in a non-reciprocal fashion by means of the at least one phase modulation unit. Modulation amplitudes φ0,n and modulation frequencies vn are selected as a function of modulation-relevant optical path lengths ln.
摘要翻译:本发明涉及具有多个传感器头的光纤电流或磁场传感器,以及相应的测量方法。 传感器有一个光源:N> = 2个传感头; 至少一个相位调制单元; 检测器 一个控制和评估单位。 至少一个相位调制单元连接到至少一个传感器头。 光波可以通过至少一个相位调制单元以不可逆的方式进行差分相位调制。 作为调制相关光程长度l N n N的函数,选择调制幅度Φ0,n N和调制频率v N n N。
摘要:
The fiber-optic sensor head (2) for a current or magnetic field sensor comprises an optical fiber which contains a magnetooptically active sensor fiber (3) and at least one polarization-maintaining supply fiber (5), which are optically connected, with the sensor fiber (3) having its fiber protective sheath removed. The sensor head (2) furthermore contains a capillary (6), in which at least the sensor fiber (3) is arranged. Furthermore, the sensor head (2) can be bent in the area of the sensor fiber (3), and a friction reducing means (7) is provided in the capillary (6), in order to reduce the friction between the sensor fiber (3) and the capillary (6). The friction reducing means (7) is advantageously an oil or a dry lubricating means (7). The capillary (6) is advantageously encased by a capillary casing (8). The sensor (2) allows very largely temperature-dependent measurements, is easy to install and allows measurements on large cross-section conductors.
摘要:
The subject matter of the present invention is a fiber-optic outdoor high-voltage sensor 1. The known sensor principle is based on the fact that a piezoelectric quartz cylinder 3 wound with a glass fiber 4a effects a voltage-proportional fiber strain which is measured interferometrically. According to the invention, a 420 kV outdoor sensor 1 is created by virtue of the fact that several quartz cylinders 3 and electrically conductive spacing elements 5 are arranged in an alternating fashion one behind another and are sealed in a silicone-shielded 17 insulating tube 16 by means of polyurethane 18 or silicone 21. Dividing the high voltage between several spaced, E-field integrating sensor elements 2 permits simple field control and a very high measuring accuracy. In addition, the fiber-optic voltage sensor 1 is distinguished by a low outlay on insulation, compactness and low weight, and can easily be scaled to other voltage levels and be effectively combined with optical current sensors 38.
摘要:
The current in a conductor is measured by exploiting the Faraday effect in a sensing fiber. The light returning from the sensing fiber is split into at least two parts, at least one of which is analyzed by a first circular analyzer for generating a first signal. A second part may e.g. be analyzed by a second circular analyzer, and a third part may be analyzed by a linear analyzer. By combining the signals obtained in this way, the current induced phase delay in the returning light can be measured efficiently and accurately.
摘要:
The invention relates to a frequency-coded fiber laser pressure sensor (1) which is especially suitable for measuring isotropic pressures in oil wells. The sensor principle provided for in the invention is based on the fact that in a fiber laser (2) doped with Er3+ a monomode or bimodal sensor fiber (5, 5a, 5b) is positioned whose pressure-related birefraction results in a frequency shift and beat frequencies between the orthogonal linear polarisation modes x, y or the spatial modes LP01 and LP11straight line. The beat frequencies are easily measured using a frequency counter (19). Temperature-related variations in birefraction are compensated in a differential arrangement of two sensor fiber segments (5a, 5b). Fiber-integrated Bragg gratings (4a, 4b) with low bandwidths (0.2 nm) are especially suitable as laser end reflectors. The pressure sensor (1) is characterized by a large measurement range (100 Mpa) and a high triggering capacity , (kPa), is readily multiplexed and can be housed in a very compact, light-weight and robust pressure-resistant housing (25).
摘要:
An electro-optical high-voltage sensor includes a waveguiding sensing fiber of an electro-optical material. The electrical field of the voltage to be measured is substantially parallel to the longitudinal axis of the sensing fiber. The sensing fiber carries two orthogonally polarized light waves, with the applied field affecting the birefringence between the waves. Using an electro-optical waveguiding fiber in this configuration allows the voltage between two widely spaced points to be accurately measured.
摘要:
In a gas-insulated switchgear having an isolated-phase bus, a current-carrying bus (2) with a given external radius R.sub.1 is arranged coaxially in a cylindrical enclosure with a given external radius R.sub.2, the voltage of the current carrying bus is measured using optical fiber voltage transducers. For this purpose, at least three identical piezoelectric sensor elements are provided. They are arranged essentially at a distance corresponding to the internal radius R.sub.2 from an axis of the current carrying bus in the enclosure at identical angular distances. The sensor elements are preferably accommodated together with an optical fiber curent transducer in a metal ring that can be inserted into the enclosure.
摘要:
Without special measures, a fiber-optic current sensor coil (11) and fiber-optic .lambda./4 time delay elements (9, 9'), which are connected in series with the current sensor coil (11), are temperature-dependent with respect to a relative phase lag of light passing through. In order to avoid a temperature correction or temperature compensation, the current sensor coils (11) and, if appropriate, also the .lambda./4 time delay elements (9, 9') are annealed, so that virtually no mechanical stresses remain in the optical fibers. The current sensor coil (11) is preferably mounted unrestrained in a capillary (20) filled with a protective gas. The capillary (20) is embedded in a gastight fashion in a potting compound (22) made from polyurethane, and is thus also mechanically protected.
摘要:
A fiber-optic sensor head is disclosed for an optical current or magnetic-field sensor which can have an optical fiber which includes a magnetooptically active sensor fiber which is optically connected to at least one polarization-defining element. The sensor fiber can be arranged in a magnetic field to be measured or around a conductor carrying current to be measured and can be in the form of a coil, with the coil defining a coil plane (A) with a surface normal (Ns), and with the at least one polarization-defining element having a marked axis (f). The sensor head can be flexible in the area of the sensor fiber, and an adjustment means can be provided for adjustment of a predeterminable angle β between the marked axis,(f) and the surface normal (Ns) or for adjustment of predeterminable angles β, β′ between the marked axes (f) and the surface normal (Ns).