摘要:
A fuel cell stack comprises a stack of three or more fuel cells, each having an assembly in which an anode electrode and a cathode electrode are respectively joined to either side of an electrolytic membrane. The anode electrode is provided nearer to one end, in the stack direction of the fuel cell, than the cathode electrode. Temperature regulating parts for regulating the temperature of the anode electrode of one fuel cell of any two adjacent fuel cells and the cathode electrode of the other fuel cell are disposed at a plurality of positions arranged in the stack direction. The provided temperature regulating parts perform temperature regulation so that the heat dissipating capability of the anode electrode is different in the stack direction from that of the cathode electrode.
摘要:
A fuel cell stack comprises a stack of three or more fuel cells, each having an assembly in which an anode electrode and a cathode electrode are respectively joined to either side of an electrolytic membrane. The anode electrode is provided nearer to one end, in the stack direction of the fuel cell, than the cathode electrode. Temperature regulating parts for regulating the temperature of the anode electrode of one fuel cell of any two adjacent fuel cells and the cathode electrode of the other fuel cell are disposed at a plurality of positions arranged in the stack direction. The provided temperature regulating parts perform temperature regulation so that the heat dissipating capability of the anode electrode is different in the stack direction from that of the cathode electrode.
摘要:
A fuel cell simulator is provided which helps to present guidelines for improving performance when analyzing the causes of decline in performance of a fuel cell. In order to achieve the object, the fuel cell simulator according to the present invention displays separately the activation overvoltage, the concentration overvoltage, and the resistance overvoltage, as respective components of the overvoltage. By displaying the respective components of the overvoltage separately, the amount of the loss accounted for respectively by the activation overvoltage, the concentration overvoltage and the resistance overvoltage of the overall loss can be identified readily, thereby serving to present guidelines for improving performance, when analyzing the causes of decline in performance in a fuel cell.