摘要:
The table on which a workpiece is put can travel on a guide rail mechanism relative to a working head with a cutting tool mounted thereon. The table is connected through a nut to a ball screw part to move in an axial direction thereof as the ball screw part rotates. One end of the ball screw part is supported by a bearing and the other end is connected to a servomotor to be rotationally driven. A hollow part is provided in the table to receive therein a damper mechanism part, which comprises a spring, a damper, and a weight, the table and the weight being arranged to enable traveling separately on guide rails. Thereby, even when the workpiece is heavy, the weight can move relative to the table to effectively damp vibrations of the table in a feed direction.
摘要:
Using parameters such as diameters of a rough cutter and a finishing cutter, a position of a tool at cutting work completion in a rough work, a finishing cutting area, specifications of a rotating tool (the number of cutting edges, a cutting force eigenvalue, a compliance transfer function), etc., a cutting force acting on a cutting edge of the rotating tool is found, and results thereof are made use of to analyze a characteristic equation being a loop transfer function of a vibration system composed of the rotating tool and a work, whereby it is possible to predict presence of generation of self-excited vibration of the finishing cutter performed after a rough work in a shoulder cutting work. Thereby, the rotating tool operates stably in a finishing work and besides shoulder cutting of a work can be performed in a high work efficiency.
摘要:
A corner portion working tool includes: a main body portion 4 having a space 5 through which a cutting fluid can pass; and a blade portion 8 that is provided in the main body portion 4 and can be displaced outwardly of the main body portion 4, wherein the blade portion 8 is displaced outwardly of the main body portion 4 according to a change in hydrostatic pressure of the cutting fluid having passed through the space 5, and the main body portion 4 is rotated to work a corner portion with the blade portion 8. Thus, the corner portion working tool brings the blade portion for deburring or corner portion shape forming into contact with only a hole end surface, does not reduce quality of an inner wall surface of a hole, does not select a proper rotation condition, and easily performs deburring or corner portion shape forming.
摘要:
Using parameters such as diameters of a rough cutter and a finishing cutter, a position of a tool at cutting work completion in a rough work, a finishing cutting area, specifications of a rotating tool (the number of cutting edges, a cutting force eigenvalue, a compliance transfer function), etc., a cutting force acting on a cutting edge of the rotating tool is found, and results thereof are made use of to analyze a characteristic equation being a loop transfer function of a vibration system composed of the rotating tool and a work, whereby it is possible to predict presence of generation of self-excited vibration of the finishing cutter performed after a rough work in a shoulder cutting work. Thereby, the rotating tool operates stably in a finishing work and besides shoulder cutting of a work can be performed in a high work efficiency.
摘要:
The table on which a workpiece is put can travel on a guide rail mechanism relative to a working head with a cutting tool mounted thereon. The table is connected through a nut to a ball screw part to move in an axial direction thereof as the ball screw part rotates. One end of the ball screw part is supported by a bearing and the other end is connected to a servomotor to be rotationally driven. A hollow part is provided in the table to receive therein a damper mechanism part, which comprises a spring, a damper, and a weight, the table and the weight being arranged to enable traveling separately on guide rails. Thereby, even when the workpiece is heavy, the weight can move relative to the table to effectively damp vibrations of the table in a feed direction.
摘要:
A method for calculating depth of cut without any milling self-excited vibration. An initial value for machining-surface-perpendicular depth of cut is set. A cutting start angle and cutting end angle for a cutting edge is obtained, based on the initial value. A machining-surface-perpendicular depth of cut that causes no self-excited vibration is calculated. The maximum depth of cut that corresponds to the stability limit of a milling self-excited vibration is calculated, by repeating the calculation while modifying the initial value until the difference between the initial value and the calculation result becomes the same as, or smaller than, a given value. As a result, the stability-limit depth of cut is preliminarily analyzed to the milling self-excited vibration in consideration of a pick feed, the gradient angle of a workpiece, and a machining-surface curvature radius, so that man-hours required for creation and modification of NC data can be reduced.
摘要:
There is provided a method for calculating depth of cut without any milling self-excited vibration, in consideration of a machining condition, the rigidity of a machining tool, the machinability of a material, and the like; in the method, an initial value for the machining-surface-perpendicular depth of cut is firstly set, by utilizing as input values the curvature radius of a machining surface, a tool radius, a pick feed, the gradient angle between the machining surface and a rotation axis of the tool, and the number of tool edges; a cutting start angle and a cutting end angle for a cutting edge is obtained, based on the initial value; the machining-surface-perpendicular depth of cut that causes no self-excited vibration is calculated; and the maximum depth of cut that corresponds to the stability limit of a milling self-excited vibration is calculated, by repeating the calculation while modifying the initial value until the difference between the initial value and the calculation result becomes the same as or smaller than a given value. As a result, in gradient-surface milling processing by use of a rotating tool, the stability-limit depth of cut is preliminarily analyzed to the milling self-excited vibration in consideration of a pick feed, the gradient angle of a workpiece, and a machining-surface curvature radius, so that the number of man-hours required for creation and modification of NC data can be reduced.