摘要:
A heat removal assembly for a light emitting diode lighting apparatus is described. One embodiment of the heat removal assembly includes a plurality of fins configured to receive heat from a light emitting diode. In the plurality of fins, two adjacent fins are separated by a gap width, and each fin has a fin length. The heat removal assembly also includes a duct configured to draw a stack-effect airflow through the plurality of fins to remove heat from the plurality of fins. The gap width separating two adjacent fins and the fin length of each of the fins are configured to prevent boundary layer choking the plurality of fins. In one embodiment, the heat removal assembly also includes a conductor and a thermal storage system configured to receive heat from the light emitting diode. A lighting apparatus including the heat removal assembly, a light emitting diode, and a connector plug is also described. In one embodiment, the lighting apparatus can be installed in a recessed can in which incoming and outgoing flows of a stack-effect airflow are separated. Methods for removing heat from a light emitting diode are also described.
摘要:
One heat removal assembly includes a plurality of fins configured to receive heat from a light emitting diode. In the plurality of fins, two adjacent fins are separated by a gap width, and each fin has a fin length. The heat removal assembly also includes a duct configured to draw a stack-effect airflow through the plurality of fins to remove heat from the plurality of fins. The gap width separating two adjacent fins and the fin length of each of the fins are configured to prevent boundary layer choking the plurality of fins. The heat removal assembly also includes a conductor and a thermal storage system configured to receive heat from the light emitting diode.
摘要:
An active cooling assembly is described. One embodiment of the active cooling assembly includes a fin configured to enable convective heat transfer to an airflow passing over the fin. A boundary layer accumulates between the fin and the airflow, and the boundary layer includes a region of heated air attached to a side of the fin. The embodiment also includes a blade configured to oscillate proximate to the fin to shear the boundary layer that accumulates between the fin and the airflow. The region of heated air is sheared from the side of the fin so that the impedance attributable to the boundary layer of the convective heat transfer from the fin to the airflow is reduced. The fin is coupled to a stationary arm, and the blade is coupled to a swing arm. The swing arm and a spring are driven at a resonant frequency by an actuator.
摘要:
An active cooling assembly is described. One embodiment of the active cooling assembly includes a fin configured to enable convective heat transfer to an airflow passing over the fin. A boundary layer accumulates between the fin and the airflow, and the boundary layer includes a region of heated air attached to a side of the fin. The embodiment also includes a blade configured to oscillate proximate to the fin to shear the boundary layer that accumulates between the fin and the airflow. The region of heated air is sheared from the side of the fin so that the impedance attributable to the boundary layer of the convective heat transfer from the fin to the airflow is reduced. The fin is coupled to a stationary arm, and the blade is coupled to a swing arm. The swing arm and a spring are driven at a resonant frequency by an actuator.