摘要:
The present invention provides an actinic energy radiation curable ink-jet ink exhibiting excellent ink storage stability, nozzle ink repellency, and ejection stability, and also exhibiting excellent curability, anti-abrasion properties, solvent resistance, flexibility, weather resistance, and substrate adhesion properties even under various ambience factors and irradiation conditions, as well as an ink-jet recording method and printed matter using the same. In an actinic energy radiation curable ink-jet ink containing a cationically polymerizable compound and a photo-cationic polymerization initiator, an actinic energy radiation curable ink-jet ink wherein a cationically polymerizable compound having a vinyl ether group as a reactive group is contained at 50.0% by mass or more and the halogen ion content is 1.0 μg/g of the ink-100 μg/g of the ink.
摘要:
Provided is an ultraviolet curable inkjet ink and an inkjet image formation method that uses said inkjet ink. The inkjet ink can be ejected from an inkjet head without being diluted by a solvent, has high photo curing sensitivity and produces high quality images with excellent weather resistance (smear resistance). The inkjet ink is characterized by a polymerizable compound which contains a maleimide compound having a chiral group and a compound selected from a vinyl ether compound and a N-vinyl compound.
摘要:
Provided is an ultraviolet curable inkjet ink and an inkjet image formation method that uses said inkjet ink. The inkjet ink can be ejected from an inkjet head without being diluted by a solvent, has high photo curing sensitivity and produces high quality images with excellent weather resistance (smear resistance). The inkjet ink is characterized by a polymerizable compound which contains a maleimide compound having a chiral group and a compound selected from a vinyl ether compound and a N-vinyl compound.
摘要:
In an ink jet ink containing a pigment, a binder resin, water, an organic solvent, and a surfactant, the surface tension of the ink is in a region defined by γ0−γx≧1.0 (γ0: surface tension before evaporation, γx: surface tension at an evaporation rate X %) when the evaporation rate X of the ink is in a range of 0