Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.
Abstract:
An organic light emitting display device with enhanced luminous efficiency and color viewing angle and a method of manufacturing the same are disclosed. The method includes forming a first electrode of each of red, green, blue and white sub-pixels on a substrate, forming a white organic common layer on the first electrodes, and forming a second electrode on the white organic common layer, wherein the first electrodes each includes multiple transparent conductive layers and is formed such that a thickness of the first electrode of each of two sub-pixels among the red, green, blue and white sub-pixels is greater than a thickness of the first electrode of each of the other two sub-pixels, and at least two layers excluding the lowermost layer among the multiple transparent conductive layers of each first electrode are formed to cover opposite sides of the lowermost layer.
Abstract:
Discussed is an organic light emitting device that exhibits improved efficiency and driving voltage by applying a novel material facilitating charge generation to a charge generation layer. The charge generation layer contains a compound represented by the following formulae: wherein R1, R2, R3, R4, R5, R6, R7 and R8 are optionally substituted and are independently selected from an aromatic group having 6 to 20 carbon atoms, and R9 and R10 are independently selected from hydrogen, an optionally substituted aromatic ring having 6 to 20 carbon atoms and an optionally substituted heterocyclic compound having 3 to 17 carbon atoms and one or more elements of N, S and P.
Abstract translation:讨论了通过应用促进电荷产生层的电荷产生的新型材料,显示出提高的效率和驱动电压的有机发光器件。 电荷产生层含有由下式表示的化合物:其中R1,R2,R3,R4,R5,R6,R7和R8任选被取代,并且独立地选自具有6至20个碳原子的芳族基团,R 9和 R 10独立地选自氢,任选取代的具有6至20个碳原子的芳环和具有3至17个碳原子的任选取代的杂环化合物和N,S和P的一种或多种元素。
Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.
Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.
Abstract:
An organic light emitting display device with enhanced luminous efficiency and color viewing angle and a method of manufacturing the same are disclosed. The method includes forming a first electrode of each of red, green, blue and white sub-pixels on a substrate, forming a white organic common layer on the first electrodes, and forming a second electrode on the white organic common layer, wherein the first electrodes each includes multiple transparent conductive layers and is formed such that a thickness of the first electrode of each of two sub-pixels among the red, green, blue and white sub-pixels is greater than a thickness of the first electrode of each of the other two sub-pixels, and at least two layers excluding the lowermost layer among the multiple transparent conductive layers of each first electrode are formed to cover opposite sides of the lowermost layer.
Abstract:
An organic light emitting display panel includes a light emitting diode array substrate and an encapsulation substrate adhered to the light emitting array diode substrate by an adhesive film. The light emitting array diode substrate includes a driving thin film transistor formed on a substrate, an organic light emitting diode including a first electrode connected to the driving thin film transistor, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer, and first and second passivation layers formed on the second electrode. In this regard, the first passivation layer is formed of an organic compound having at least one of the structural formulae described in Formula 1 below: wherein R1, R2, R3, R4, R5, and R6 are each independently selected from substituted or unsubstituted C6-C40 aromatic groups.