Abstract:
A sealing layer covers more surely both of a display region and a peripheral region on a substrate. A dummy structure is formed in the peripheral region of the substrate. The dummy structure contains, for instance, at least one of the materials constituting an organic EL display structure. The dummy structure is located in the peripheral region so that the volume per unit area of the sealing layer in the peripheral region is substantially the same as that in the display region.
Abstract:
A method of compensating for changes in characteristics of a panel of a display device is disclosed. The panel includes subpixels, each of the subpixels including an organic light emitting diode. The method comprises: counting, by the display device, at least one on-time of at least one subpixel of the subpixels, the at least one on-time indicating a number of occurrences of light emitted by the at least one subpixel; transmitting, by the display device, the at least one on-time to a remote compensation server through a network; determining, by the remote compensation server, an organic light emitting diode compensation factor based on the at least one on-time; transmitting, by the remote compensation server, the organic light emitting diode compensation factor to the display device through the network; and driving, by the display device, the panel based on the organic light emitting diode compensation factor.
Abstract:
A light emitting display device and a driving method thereof are provided, in which a luminance difference occurring in a boundary between a fingerprint scanning area and a non-fingerprint scanning area is not perceived by a user. The light emitting display device can include a display panel including a display area where a plurality of pixels is provided to display an image. The display area can include a first area, a second area, and a boundary area disposed between the first area and the second area. In a case where the display panel displays a predetermined image pattern, each of pixels in the first area can emit a first light having a first luminance, each of pixels in the second area can emit a second light having a second luminance lower than the first luminance or cannot emit any light, and the luminance of pixels in the boundary area can be progressively reduced from the first area to the second area.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
An image display device including a light-emitting element configured to emit light corresponding to a current flowing therethrough; a driving element that is connected to the light-emitting element and configured to control light emission of the light-emitting element; and a control unit configured to apply a reverse bias voltage to a first n-type driving element whose the threshold voltage determined at a specific time is equal to or higher than a positive predetermined voltage level for shifting the threshold voltage of the first n-type driving element in a negative direction, and not apply the reverse bias voltage to a second n-type driving element whose the threshold voltage determined at the specific time is lower than the positive predetermined voltage level for shifting the threshold voltage of the second n-type driving element in a positive direction when the light-emitting element does not emit light.
Abstract:
Provided is a flexible organic electroluminescent device and a method for fabricating the same. The device includes a switching thin film transistor and a drive thin film transistor formed at an each pixel region on the substrate; an interlayer insulating layer formed on the substrate; a partition wall pattern formed in the non-display area of the substrate; a first electrode formed on the interlayer insulating layer; a bank formed around each pixel region; an organic light emitting layer separately formed on the first electrode; a second electrode formed on an entire surface of the display area; a first passivation layer formed on an entire surface of the substrate; an organic layer and a second passivation layer formed on the first passivation layer of the display area; a barrier film located to face the substrate.
Abstract:
A display device and method of forming a display device are provided. A display device includes: a first auxiliary electrode coupled to a first power voltage supply line; a second auxiliary electrode coupled to a second power voltage supply line with a first link electrode; an active area, comprising: scan lines; data lines; first voltage lines; second voltage lines; and pixels; and a display drive circuit configured to supply data voltages to data links coupled to the data lines, wherein the first auxiliary electrode, the second auxiliary electrode, the first power voltage supply line, the second power voltage supply line, the data links, and the display drive circuit being in a bezel area corresponding to an area outside the active area, the second auxiliary electrode being between the first auxiliary electrode and the active area, the first auxiliary electrode being between the second auxiliary electrode and the display drive circuit.