Abstract:
Disclosed are an MnBi sintered magnet exhibiting excellent thermal stability as well as excellent magnetic characteristics at high temperature, an MnBi anisotropic complex sintered magnet, and a method of preparing the same.
Abstract:
The present invention relates to a method of producing a large amount of hard-soft magnetic nanocomposite powder in short time. The hard-soft magnetic nanocomposite powder of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite monophased material.
Abstract:
The present invention relates to a magnetic-dielectric composite for a high-frequency antenna substrate, and a manufacturing method therefor, the composite comprising: a porous insulating dielectric substrate including an upper surface, a lower surface and lateral surfaces, and having a plurality of pores penetrating the upper surface and the lower surface; and soft ferrite nano-wires provided within the pores, wherein the soft ferrite nano-wires are encompassed by the insulating dielectric substrate so as to be separated from each other. The present invention controls a dielectric constant and can minimize eddy current loss by having a structure in which the soft ferrite nano-wires are provided within the pores of the insulating dielectric substrate and in which the soft ferrite nano-wires are encompassed by the insulating dielectric substrate so as to be separated from each other.
Abstract:
A ferrite magnet with salt includes 40 to 99.9 weight % of ferrite and 0.1 to 60 weight % of salt, wherein the salt has a melting point lower than a synthetic temperature of the ferrite, and the salt is melted to form a matrix between the ferrite particles, and a manufacturing thereof. The ferrite magnet with salt has advantages in terms of process conditions due to fast synthesis reaction at low temperatures compared to typical magnets, easily obtaining nano-sized particles having high crystallinity, preventing cohesion between particles and particle growth by molten salt, allowing sintering at temperatures lower than typical during the molding and sintering processes for producing a ferrite magnet with salt due to synthesized ferrite magnetic powder with salt thus preventing the deterioration of magnetic characteristics due to particle growth, and allowing alignment in the direction of magnetization easy axis to obtain higher magnetic characteristics.
Abstract:
The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.
Abstract:
The present invention relates to an anisotropic complex sintered magnet including MnBi with magnetic characteristics enhanced and an atmospheric sintering method for preparing the same. The anisotropic complex sintered magnet including MnBi according to the present invention may implement excellent magnetic characteristics, and thus may replace rare earth bond magnets in the related art, and a continuous process is enabled because the magnet is prepared by an atmospheric sintering method, and a sintering method used in the permanent magnet process in the related art is used as it is, so that the anisotropic complex sintered magnet is economical.
Abstract:
The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.