Abstract:
Seismic image data acquired for a subsurface formation from a data acquisition system is input into a deep neural network to generate fault detection data for the subsurface formation comprising probability values at a grid of locations in the subsurface formation. The fault detection data is preprocessed via downsampling and distributed weighted factors and inputted into a generative adversarial network (GAN) upscaling generator to create high resolution fault detection data with minimized distortion and artifacts. The GAN upscaling generator is pre trained on synthetic fault data in a GAN training system using adversarial training against a GAN upscaling discriminator, and both the GAN upscaling generator and the GAN upscaling discriminator learn to approximate the distribution of the synthetic fault data.
Abstract:
A system can receive seismic data that can correlate to a subterranean formation. The system can derive a set of seismic attributes from the seismic data. The seismic attributes can include discontinuity-along-dip. The system can determine parameterized results by analyzing the seismic data and the seismic attributes using a deep learning neural network. The deep learning neural network can include a dilation module. The system can determine one or more fault probabilities of the subterranean formation using the parameterized results. The system can output the fault probabilities for use in a hydrocarbon exploration operation.
Abstract:
Frequency-dependent machine-learning (ML) models can be used to interpret seismic data. A system can apply spectral decomposition to pre-processed training data to generate frequency-dependent training data of two or more frequencies. The system can train two or more ML models using the frequency-dependent training data. Subsequent to training the two or more ML models, the system can apply the two or more ML models to seismic data to generate two or more subterranean feature probability maps. The system can perform an analysis of aleatoric uncertainty on the two or more subterranean feature probability maps to create an uncertainty map for aleatoric uncertainty. Additionally, the system can generate a filtered subterranean feature probability map based on the uncertainty map for aleatoric uncertainty.
Abstract:
Some implementations may include a method for detecting, by a learning machine, a geobody in a seismic volume. The method may include receiving a first seismic input tile representing first seismic data from the seismic volume; receiving a first guide input tile including first labels that indicate presence of the geobody in a respective region in the seismic volume or absence of the geobody in the respective region, and one or more unlabeled regions that make no indication about presence or absence of the geobody; and determining, based on the first seismic input tile and the first guide input tile, a first prediction about geobody presence or absence in the seismic volume.
Abstract:
Some implementations include a method for controlling a computer to geologically characterize a space relative to a borehole. The method may include configuring a diffusion process applied to information and data about samples of reservoir parameters. The method also may include determining, via the diffusion process, a probability distribution of the reservoir parameters in the space relative to the borehole.
Abstract:
This disclosure presents a fault prediction system using a deep learning neural network, such as a convolutional neural network. The fault prediction system utilizes as input seismic data, and then derives various seismic attributes from the seismic data. In various aspects, the seismic attributes can be normalized and have importance coefficients determined. A sub-set of seismic attributes can be selected to reduce computing resources and processing time. The deep learning neural network can utilize the seismic data and seismic attributes to determine parameterized results representing fault probabilities. The fault prediction system can utilize the fault probabilities to determine fault predictions which can be represented as a predicted new seismic data, such as using a three-dimensional image.
Abstract:
A system can receive seismic data that can correlate to a subterranean formation. The system can derive a set of seismic attributes from the seismic data. The seismic attributes can include discontinuity-along-dip. The system can determine parameterized results by analyzing the seismic data and the seismic attributes using a deep learning neural network. The deep learning neural network can include a dilation module. The system can determine one or more fault probabilities of the subterranean formation using the parameterized results. The system can output the fault probabilities for use in a hydrocarbon exploration operation.
Abstract:
Seismic Modeling Using Multiple Seismic Sources. At least some of the illustrative embodiments are methods including: simulating an effect of multiple seismic sources concurrently on a geologic formation, the simulating by: reading data from a seismic source file, wherein the seismic source file describes at least two seismic source types; modeling, by a computer system, the concurrent propagation of acoustic energy from the at least two seismic sources types through the geologic formation; and generating a seismic output file.
Abstract:
Disclosed are systems and methods for numerically simulating seismic-wave propagation in tilted transversely isotropic (TTI) media, using an adaptive Lebedev staggered grid. In various embodiments, the adaptive grid includes multiple horizontal zones having different associated grid spacings, which may be determined based on a vertical wave-velocity model. The numerical simulation may involve iteratively solving a set of finite-difference equations including finite-difference coefficients that vary spatially depending on the grid spacing. Additional embodiments and features are described.
Abstract:
The disclosure relates to determining rock properties of subterranean formations and learning the distribution of hydrocarbons in the formations. A geometrical element spread function is disclosed that quantifies distortion of the geology as seen by the geophysicists who process seismic images of the subterranean formations. A method of determining the rock properties using the seismic images and synthetic images is provided. In one example, the method includes: (1) obtaining seismic data from a subterranean formation using a seismic acquisition system, (2) generating one or more seismic images of the subterranean formation using the seismic data, (3) creating one or more synthetic images from the one or more seismic images, and (4) determining rock properties of the subterranean formation based on the one or more seismic images and the one or more synthetic images.