Synthetic Cannabinoid structure classification using the bridge carbonyl frequency in vapor phase

    公开(公告)号:US10782271B2

    公开(公告)日:2020-09-22

    申请号:US16350805

    申请日:2019-01-14

    摘要: Synthetic Cannabinoids are the most complex branch of designer drugs encountered in forensic chemistry. A screening method has been developed that can accurately identify the correct structural category of an unknown Synthetic Cannabinoid. Knowledge of this information is very important when no reference data or standards are available since certain sub-categories contain Schedule I Controlled Dangerous Substances. The Bridge portion of these molecules present a unique carbonyl band cluster within a small 200 wavenumber interval of the mid-infrared region that can only exist in vapor phase through GC/FTIR light-pipe technology or heated static vapor cell FTIR. This special relationship is not applicable to any other forms of solid phase vibrational spectroscopy (FTIR, RAMAN) including GC/FTIR solid-deposit techniques. The carbonyl frequency from the Bridge is used as the first step in the screening process which separates the entire forensically encountered class of Synthetic Cannabinoids into 35 sub-categories. Additional bands within the cluster from secondary functional groups, rotational isomerism, and fermi resonance add further refinement within these categories.

    Synthetic cannabinoid structure classification using the bridge carbonyl frequency in vapor phase

    公开(公告)号:US20190178858A1

    公开(公告)日:2019-06-13

    申请号:US16350805

    申请日:2019-01-14

    IPC分类号: G01N30/86 G01N30/74 G01N30/88

    摘要: Synthetic Cannabinoids are the most complex branch of designer drugs encountered in forensic chemistry. A screening method has been developed that can accurately identify the correct structural category of an unknown Synthetic Cannabinoid. Knowledge of this information is very important when no reference data or standards are available since certain sub-categories contain Schedule I Controlled Dangerous Substances. The Bridge portion of these molecules present a unique carbonyl band cluster within a small 200 wavenumber interval of the mid-infrared region that can only exist in vapor phase through GC/FTIR light-pipe technology or heated static vapor cell FTIR. This special relationship is not applicable to any other forms of solid phase vibrational spectroscopy (FTIR, RAMAN) including GC/FTIR solid-deposit techniques. The carbonyl frequency from the Bridge is used as the first step in the screening process which separates the entire forensically encountered class of Synthetic Cannabinoids into 35 sub-categories. Additional bands within the cluster from secondary functional groups, rotational isomerism, and fermi resonance add further refinement within these categories.