ANOMALY DETECTION, FORECASTING AND ROOT CAUSE ANALYSIS OF ENERGY CONSUMPTION FOR A PORTFOLIO OF BUILDINGS USING MULTI-STEP STATISTICAL MODELING
    2.
    发明申请
    ANOMALY DETECTION, FORECASTING AND ROOT CAUSE ANALYSIS OF ENERGY CONSUMPTION FOR A PORTFOLIO OF BUILDINGS USING MULTI-STEP STATISTICAL MODELING 有权
    异常检测,预测和根本原因分析使用多步统计建模的建筑物组合能源消耗

    公开(公告)号:US20120278051A1

    公开(公告)日:2012-11-01

    申请号:US13098044

    申请日:2011-04-29

    IPC分类号: G06F17/10 G06F19/00 G01R19/00

    CPC分类号: G06Q10/04 G06Q50/06

    摘要: Multi-step statistical modeling in one embodiment of the present disclosure enables anomaly detection, forecasting and/or root cause analysis of the energy consumption for a portfolio of buildings using multi-step statistical modeling. In one aspect, energy consumption data associated with a building, building characteristic data associated with the building, building operation and activities data associated with the building, and weather data are used to generate a variable based degree model. A base load factor, a heating coefficient and a cooling coefficient associated with the building and an error term are determined from the variable based degree model and used to generate a plurality of multivariate regression models. A time series model is generated for the error term to model seasonal factors which reflect monthly dependence on energy use and an auto-regressive integrated moving average model (ARIMA) which reflects temporal dependent patterns of the energy use.

    摘要翻译: 在本公开的一个实施例中的多步统计建模使得能够使用多步统计建模对建筑物组合的能量消耗进行异常检测,预测和/或根本原因分析。 一方面,使用与建筑物相关联的能量消耗数据,构建与建筑物相关联的特征数据,建筑物操作和与建筑物相关联的活动数据以及天气数据来生成基于变量的度模型。 从基于变量的度模型确定基础负荷因子,与建筑物相关联的加热系数和冷却系数以及误差项,并用于产生多个多元回归模型。 为误差项生成时间序列模型,以模拟每月依赖能源使用的季节因素和反映能量使用的时间依赖模式的自回归积分移动平均模型(ARIMA)。

    Anomaly detection, forecasting and root cause analysis of energy consumption for a portfolio of buildings using multi-step statistical modeling
    3.
    发明授权
    Anomaly detection, forecasting and root cause analysis of energy consumption for a portfolio of buildings using multi-step statistical modeling 有权
    使用多步统计建模的建筑物组合能耗的异常检测,预测和根本原因分析

    公开(公告)号:US08738334B2

    公开(公告)日:2014-05-27

    申请号:US13098044

    申请日:2011-04-29

    IPC分类号: G06F17/10

    CPC分类号: G06Q10/04 G06Q50/06

    摘要: Multi-step statistical modeling in one embodiment of the present disclosure enables anomaly detection, forecasting and/or root cause analysis of the energy consumption for a portfolio of buildings using multi-step statistical modeling. In one aspect, energy consumption data associated with a building, building characteristic data associated with the building, building operation and activities data associated with the building, and weather data are used to generate a variable based degree model. A base load factor, a heating coefficient and a cooling coefficient associated with the building and an error term are determined from the variable based degree model and used to generate a plurality of multivariate regression models. A time series model is generated for the error term to model seasonal factors which reflect monthly dependence on energy use and an auto-regressive integrated moving average model (ARIMA) which reflects temporal dependent patterns of the energy use.

    摘要翻译: 在本公开的一个实施例中的多步统计建模使得能够使用多步统计建模对建筑物组合的能量消耗进行异常检测,预测和/或根本原因分析。 一方面,使用与建筑物相关联的能量消耗数据,构建与建筑物相关联的特征数据,建筑物操作和与建筑物相关联的活动数据以及天气数据来生成基于变量的度模型。 从基于变量的度模型确定基础负荷因子,与建筑物相关联的加热系数和冷却系数以及误差项,并用于产生多个多元回归模型。 为误差项生成时间序列模型,以模拟每月依赖能源使用的季节因素和反映能量使用的时间依赖模式的自回归积分移动平均模型(ARIMA)。

    Change point detection in causal modeling
    4.
    发明授权
    Change point detection in causal modeling 失效
    因果模型中的变化点检测

    公开(公告)号:US08645304B2

    公开(公告)日:2014-02-04

    申请号:US13213273

    申请日:2011-08-19

    IPC分类号: G06N5/02

    CPC分类号: G06N7/005 G01W1/10

    摘要: Structural changes in causal relationship over time may be detected, for example, by a Markov switching vector autoregressive model that detects and infers the structural changes in the causal graphs.

    摘要翻译: 随着时间的推移,因果关系的结构变化可能被检测到,例如,通过马尔科夫切换向量自回归模型检测并推断因果图中的结构变化。

    CHANGE POINT DETECTION IN CAUSAL MODELING
    5.
    发明申请
    CHANGE POINT DETECTION IN CAUSAL MODELING 失效
    改变点检测在原始建模

    公开(公告)号:US20130046721A1

    公开(公告)日:2013-02-21

    申请号:US13213273

    申请日:2011-08-19

    IPC分类号: G06N5/02

    CPC分类号: G06N7/005 G01W1/10

    摘要: Structural changes in causal relationship over time may be detected, for example, by a Markov switching vector autoregressive model that detects and infers the structural changes in the causal graphs.

    摘要翻译: 随着时间的推移,因果关系的结构变化可能被检测到,例如,通过马尔科夫切换向量自回归模型检测并推断因果图中的结构变化。