摘要:
A method and apparatus for estimating a flow rate of a phase of a multiphase fluid is disclosed. A first velocity distribution is obtained for a first set of nuclei in the fluid from a Nuclear Magnetic Resonance (NMR) signal received for the fluid in response to a first NMR excitation signal. A second velocity distribution is obtained for a second set of nuclei in the fluid from an NMR signal received for the fluid in response to a second NMR excitation signal. A velocity of the phase is estimated from the first velocity distribution and the second velocity distribution. The flow rate of the phase is estimated using the estimated velocity of the phase and an estimated volume fraction of the phase.
摘要:
A method and apparatus for estimating a flow rate of a phase of a multiphase fluid is disclosed. In the first method, nuclei in the fluid are polarized over two distances and a measured magnetization gives the relative fraction of two components of the fluid for a selected velocity. In the second method, nuclei in the fluid are polarized over a specified distance and measurements of the decay of spin echo signals is used to give the relative fraction of two components of the fluid for the selected velocity.
摘要:
A method and apparatus for estimating a flow rate of a phase of a multiphase fluid is disclosed. In the first method, nuclei in the fluid are polarized over two distances and a measured magnetization gives the relative fraction of two components of the fluid for a selected velocity. In the second method, nuclei in the fluid are polarized over a specified distance and measurements of the decay of spin echo signals is used to give the relative fraction of two components of the fluid for the selected velocity.
摘要:
A method and apparatus for estimating a flow rate of a phase of a multiphase fluid is disclosed. A first velocity distribution is obtained for a first set of nuclei in the fluid from a Nuclear Magnetic Resonance (NMR) signal received for the fluid in response to a first NMR excitation signal. A second velocity distribution is obtained for a second set of nuclei in the fluid from an NMR signal received for the fluid in response to a second NMR excitation signal. A velocity of the phase is estimated from the first velocity distribution and the second velocity distribution. The flow rate of the phase is estimated using the estimated velocity of the phase and an estimated volume fraction of the phase.
摘要:
Pulse sequences are applied to a fluid in an earth formation with an external static magnetic field and NMR spin echo signals are obtained. The received NMR signals are affected by internal field gradients due to a contrast in magnetic susceptibility between the grains of the formation matrix and the fluid in the pore space. Processing of the data gives the relaxation time and diffusivity of the fluid.
摘要:
Pulse sequences are applied to a fluid in an earth formation with an external static magnetic field and NMR spin echo signals are obtained. The received NMR signals are affected by internal field gradients due to a contrast in magnetic susceptibility between the grains of the formation matrix and the fluid in the pore space. Processing of the data gives the relaxation time and diffusivity of the fluid.
摘要:
An objective oriented NMR logging method selects pulse sequences over a plurality of frequencies from a set of building blocks. The building blocks include trainlet sequences wherein each trainlet comprises an excitation pulse and a plurality of refocusing pulses, the total length of a trainlet being typically less than 10 ms. Another building block is a short CPMG or modified CPMG sequence and yet another building block is a regular CPMG or modified CPMG sequence. The modified CPMG sequences may have refocusing pulses with a tipping angle less than 180° to reduce the power consumption. Based on the logging objective (formation evaluation or FE, FE plus hydrocarbon typing, FE plus gas evaluation) the building blocks are combined at a plurality of frequencies with different wait times and TEs.
摘要:
The quality factor of a NMR-antenna depends upon mud conductivity, formation resistivity and the borehole size. The Q of the antenna is measured. From measurement of one of formation conductivity or borehole size, the other can be determined.
摘要:
Formation testing systems and methods may inject fluids into a formation to initiate fractures and facilitate measurements of various formation properties. In accordance with certain disclosed embodiments, the injection tools are further provided with nuclear magnetic resonance (NMR) sensors to monitor the injected fluids and provide measurements of near-borehole fracture orientations and volumes. Contrast agents and/or magnetic resonance imaging (MRI) techniques may be employed. The fluid injection may occur via an extendible isolation pad, via a fracturing jet, or via an injection port in an isolated region of the borehole. The systems may employ pressure monitoring in conjunction with the NMR sensors to further enhance estimates of formation and fracture properties.
摘要:
An apparatus for estimating a property of an earth formation penetrated by a borehole, the apparatus includes: a carrier configured to be conveyed through the borehole; a nuclear magnetic resonance (NMR) instrument disposed at the carrier and configured to perform an NMR measurement on a volume sensitive to the NMR measurement; and a contrast agent disposed in the volume and comprising particles that form a suspension in a liquid, the suspension of particles being configured increase a magnetic field gradient of at least one earth formation material in the volume to change an NMR relaxation time constant of the at least one earth formation material; wherein the NMR measurement on the volume containing the at least one earth formation material and the contrast agent is used to estimate the property.