Abstract:
A device is disclosed for edge-machining an optical lens, clampable between two aligned holding shafts rotatable about the rotational axis of a workpiece, having a Z slide, which is guided longitudinally displaceably on a base frame in a Z direction parallel to the rotational axis of the workpiece, and an X slide bearing a tool post with an edge-machining tool, which is guided longitudinally displaceably on the Z slide in an X direction perpendicular to the Z direction in such a way that the edge-machining tool may be brought into machining engagement with the optical lens. For industrial use, the base frame is of substantially O-shaped construction and surrounds the Z slide, wherein the Z slide is likewise of substantially O-shaped construction and surrounds the X slide. In addition or as an alternative thereto, provision is made for an additional machining means to be fixed to the X slide, which means comprises at least one further edge-machining tool, which may be moved from a parked position into a machining position between the lens and the edge-machining tool on the tool post.
Abstract:
An apparatus is provided for securing and clamping optical lenses requiring edge-machining, in particular spectacle lenses, which exhibits improved handling and which is optimised from the point of view of virtually backlash-free rotary drive of the optical lens. Elements located between two holding shafts, in particular a clamping assembly, a securing member with securing member adapter and an adhesive connection between securing member and optical lens are specially designed for this purpose.