摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
Network traffic information from multiple sources, at multiple time scales, and at multiple levels of detail are integrated so that users may more easily identify relevant network information. The network monitoring system stores and manipulates low-level and higher-level network traffic data separately to enable efficient data collection and storage. Packet traffic data is collected, stored, and analyzed at multiple locations. The network monitoring locations communicate summary and aggregate data to central modules, which combine this data to provide an end-to-end description of network traffic at coarser time scales. The network monitoring system enables users to zoom in on high-level, coarse time scale network performance data to one or more lower levels of network performance data at finer time scales. When high-level network performance data of interest is selected, corresponding low-level network performance data is retrieved from the appropriate distributed network monitoring locations to provide additional detailed information.
摘要:
In a network including WAN accelerators and segment-oriented file servers, a method comprises responding to a client request to manipulate a file via a network file protocol by receiving a first request at a first WAN accelerator, wherein the request is a request to open a file located at a file server that is a segment-oriented file server, sending a local request for the file, corresponding to the first request, from the WAN accelerator to the file server, using a segment-aware network request protocol, returning at least a portion of the requested file in the form of a representation of a data map corresponding to the at least a portion of the requested file stored on the file server and using a data map for reconstruction of the requested file.
摘要:
A method and apparatus are provided for scheduling a heterogeneous communication flow. A heterogeneous flow is a flow comprising packets with varying classes or levels of service, which may correspond to different priorities, qualities of service or other service characteristics. When a packet is ready for scheduling, it is queued in order in a flow queue that corresponds to the communication flow. The flow queue then migrates among class queues that correspond to the class or level of service of the packet at the head of the flow queue. Thus, after the head packet is scheduled, the flow queue may be dequeued from its current class queue and requeued at the tail of another class queue. If the subsequent packet has the same classification, it may be requeued at the tail of the class queue or may remain in place for another servicing round.
摘要:
For an accelerated transaction, a client directs a request to a client-side transaction handler that forwards the request to a server-side transaction handler, which in turn provides the request, or a representation thereof, to a server for responding to the request. The server sends the response to the client via the server-side transaction handler and the client-side transaction handler. When data is to be sent between handlers, the sending transaction handler compares data segments with segments stored in its persistent segment storage and replaces segments with references to entries in its persistent segment storage that match or closely match the segments to be replaced. The transaction accelerators could handle multiple clients and/or multiple servers and the segments stored in the persistent segment stores can relate to different transactions, different clients and/or different servers. Persistent segment stores can be prepopulated with segment data from other transaction accelerators.