Abstract:
Embodiments of the present invention relate to invoking and managing a failover of a storage account between partitions within a distributed computing environment, where each partition represents a key range of data for the storage account. The partitions affected by the failover include source partitions hosted on a primary storage stamp and destination partitions hosted on a secondary storage stamp, where the storage account's data is being actively replicated from the primary to the secondary storage stamp. Upon receiving a manual or automatic indication to perform the failover, configuring the source partitions to independently perform flush-send operations (e.g., distributing pending messages as a group) and then configuring the destination partitions to independently perform flush-replay operations (e.g., aggressively replaying currently pending transactions). Upon completing the flush-replay operations, designating the secondary storage stamp as a new primary storage stamp such that live traffic is directed to the new primary storage stamp.
Abstract:
Embodiments of the present invention relate to systems, methods and computer storage media for facilitating the structured storage of binary large objects (Blobs) to be accessed by an application program being executed by a computing device. Generally, the manipulation of Blobs in a structured storage system includes receiving a request for a Blob, which may be located by way of a Blob pointer. The Blob pointer allows for the data, such as properties, of the Blob to be identified and located. Expired properties are garbage collected as a manipulation of the Blob data within a structured storage system. In an embodiment, the Blob is identified by a key that is utilized within a primary structured index to located the requested Blob. In another embodiment, the requested Blob is located utilizing a secondary hash index. In an additional embodiment, the Blob is locate utilizing a file table.