摘要:
An off-resonance magnetization transfer contrast (MTC) RF-pulse (54, 64) is used in magnetic resonance angiography (MRA) to suppress the signal of various stationary tissues, such as brain tissue while avoiding significant suppression of signal from blood flowing in a general direction of blood flow into a slice being imaged. Application of a magnetic gradient (55, 65, 85) during the MTC RF-pulse (54, 64) directed in the general direction of blood flow increases the magnetization frequency offset (86) relative to the center frequency of the MTC RF-pulse for points within and feeding blood to the slice. The MTC RF-pulse thus causes only a small signal reduction of the blood flowing into the slice in the general direction of blood flow while producing a saturation of any blood flowing into the slice in the opposite direction. Consequently, both time and RF-power needed for a separate presaturation pulse can now be used for the MTC RF-pulse.
摘要:
A method of acquiring at least one clinical MRI image of a subject comprising the following steps: acquiring a first survey image with a first field of view, the first survey image having a first spatial resolution,—locating a first region of interest and at least one anatomical landmarks in the first survey image, determining the position and the orientation of the first region of interest using the anatomical landmarks, the position and the orientation of the first region being used for—planning a second survey image,—acquiring the second survey image with a second field of view, the second survey image having a second spatial resolution, the second spatial resolution being higher than the first spatial resolution, generating a geometry planning for the anatomical region of interest using the second survey image,—acquiring a diagnostic image of the anatomical region of interest using the geometry planning.
摘要:
A magnetic resonance imaging method involves detection of a series of trigger events and acquisition of successive segments of magnetic resonance signals from respective segments of k-space. The occurrence of the next trigger event is predicted, e.g. by way of a running average, on the basis of the detected series of trigger events. Acquisition of at least one individual segment of magnetic resonance signals is triggered on the basis of the occurrence of the predicted trigger event. Triggering of the acquisition is based on the predicted trigger event, e.g. in that the instant and duration of the acquisition is adjusted on the basis of the prediction of the trigger event. Finally, a magnetic resonance image is reconstructed from several segments of magnetic resonance signals.
摘要:
A method of acquiring at least one clinical MRI image of a subject comprising the following steps: acquiring a first survey image with a first field of view, the first survey image having a first spatial resolution,—locating a first region of interest and at least one anatomical landmarks in the first survey image, determining the position and the orientation of the first region of interest using the anatomical landmarks, the position and the orientation of the first region being used for—planning a second survey image,—acquiring the second survey image with a second field of view, the second survey image having a second spatial resolution, the second spatial resolution being higher than the first spatial resolution, generating a geometry planning for the anatomical region of interest using the second survey image,—acquiring a diagnostic image of the anatomical region of interest using the geometry planning.
摘要:
A magnetic resonance imaging method involves detection of a series of trigger events and acquisition of successive segments of magnetic resonance signals from respective segments of k-space. The occurrence of the next trigger event is predicted, e.g. by way of a running average, on the basis of the detected series of trigger events. Acquisition of at least one individual segment of magnetic resonance signals is triggered on the basis of the occurrence of the predicted trigger event. Triggering of the acquisition is based on the predicted trigger event, e.g. in that the instant and duration of the acquisition is adjusted on the basis of the prediction of the trigger event. Finally, a magnetic resonance image is reconstructed from several segments of magnetic resonance signals.
摘要:
A magnetic resonance imaging method for forming forms an image of an object from a plurality of signals acquired by an array of multiple receiver antennae, and in which spins are excited in a pail of the object. Slices (22) are selected with a predetermined field-of-view for scanning the object and are rotated uniformly over a predetermined angle. MR signals are measured along a predetermined trajectory containing a plurality of lines of slices in k-space by application of a read gradient and other gradients. Further slices (24) are shifted in a lengthwise direction obtaining a staggered arrangement such that the beginning and end of each slice are at least approximately within the area covered by the slices before rotation.
摘要:
A magnetic resonance imaging method for forming an image of an object from a plurality of signals acquired by an array of multiple receiver antennae, wherein spins are excited in a part of the object. Slices (22) are selected with a predetermined Field-of-View for scanning the object and are rotated uniformly over a predetermined angle. MR signals are measured along a predetermined trajectory containing a plurality of lines said slices in k-space by application of a read gradient and other gradients. Further the slices (24) are shifted in lengthwise direction obtaining a staggered arrangement such that the beginning and the end of each of said slices are at least approximately within the area covered by the slices before rotation.
摘要:
At least one reference plane, but preferably three orthogonal reference planes (A, C, S) are defined in a magnetic resonance imaging method. A cut plane is chosen so as to extend at an angle to one (single oblique) (SO) or two (double oblique) (DO) of the reference planes. One side of the field of view within the cut plane remains parallel to one (of the) reference plane (planes). A cross-sectional magnetic resonance image along the cut plane is reconstructed from magnetic resonance signals.