Abstract:
The present invention provides a new and unique method and apparatus for providing an estimate of a mobile location of a wireless node, point or terminal in a wireless local area network (WLAN) or other suitable network, the estimate being based on a correlation of a radio frequency (RF) signal strength measurement and a grid point in a signal strength database or radio map. The signal strength database or radio map is built using a signal strength fingerprint algorithm. The signal strength fingerprint algorithm includes selecting and measuring a set of grid points in the wireless local area network (WLAN) or other suitable network.
Abstract:
Positioning beacons (109-a . . . 109-d; 602-1 . . . 602-K) are shown in a target area (100) of a location detection system (600) with location areas (103-a . . . 103-g) in the target area associated with potential beacon positions (102-a . . . 102-g) and represented by vertices (106-a . . . 106-g) of a graph (105). Reliable connectivity between location areas is represented by edges between vertices that represent the location areas. The beacons are assigned to location areas of a subset of vertices of the graph, which subset represents a robust 1-identifying code. The graph may be constrained to a regular topology to exploit availability of optimum or close-to-optimum t-edge-robust and t-vertex-robust 1-identifying codes for such regular topologies. A greedy search algorithm (400-425) may be used to find a small subset of vertices representing t-vertex-robust 1-identifying codes.
Abstract:
Various example embodiments are disclosed herein. According to an example embodiment, an apparatus for use in a wireless transmitter may include a continuous phase modulation (CPM) sample generator configured to generate a group of constant envelope CPM modulated signal samples, a Fourier transform block configured to perform a Fourier transform on the group of constant envelope signal samples to generate an initial group of Fourier coefficients, a zero insertion block configured to generate an expanded group of Fourier coefficients by inserting one or more zeros in the initial group of Fourier coefficients, and an inverse Fourier transform block configured to perform an inverse Fourier transform on the expanded group of Fourier coefficients to generate a group of constant envelope time-domain samples and to map the constant envelope time-domain samples onto a group of orthogonal subcarriers for transmission.
Abstract:
This invention relates to a method, a computer program, a computer program product, a transmitter and a receiver for a multicarrier modulation, wherein symbols are assigned to carriers of a set of N carriers, said method comprising assigning at least one of said symbols to a first carrier of said set of N carriers, and assigning an antipodal representative of said at least one of said symbols to a second carrier of said set of N carriers.
Abstract:
Testing apparatus, and an associated method, for testing operation of a mobile terminal. Testing is performed, e.g., to determine compliance of the mobile terminal to E911 Phase II positioning requirements. A network and radio channel emulator emulates network signals generated and communicated to the mobile terminal in an actual operating environment. Positioning measurements made by the mobile terminal are monitored and determinations of the operation of the mobile terminal are made therefrom.
Abstract:
A communications system includes a source, a destination, and multiple relays. In a first time period, the source emits a first transmission and a first relay retransmits a prior source transmission. Then, in a second, subsequent time period, the source node emits a second transmission and a second relay transmits the source transmission from the first time period. Optionally, the transmission from the second relay also includes the message from the first relay during the first time period. Similarly, in a third time period, the first relay transmits a message that includes the second relay's transmission and the second source transmission from the second time period. Alternatively, the source node transmit in a first frequency band, the first and second relays receive only in the first frequency band, and retransmit in a second frequency band, and the destination receives in both the first and second frequency bands.
Abstract:
Testing apparatus, and an associated method, for testing operation of a mobile terminal. Testing is performed, e.g., to determine compliance of the mobile terminal to E911 Phase II positioning requirements. A network and radio channel emulator emulates network signals generated and communicated to the mobile terminal in an actual operating environment. Positioning measurements made by the mobile terminal are monitored and determinations of the operation of the mobile terminal are made therefrom.
Abstract:
Apparatus, and an associated method, for modeling a channel impulse response of a radio channel. The model emulates an actual radio channel and is formed of non-diffuse as well as diffuse components. The model is used, for example, to test mobile stations for their compliance with E-911 phase II mandates.
Abstract:
A signal (e.g., a UWB signal) is generated that conveys a first information sequence. This generation may employ various modulation techniques, such as OFDM and DSSS. To further convey a second information sequence, this signal is spatially modulated. Then, the signal may be transmitted to a remote device. Accordingly, this may involve emitting it from two or more spatial locations based on the second information sequence. In addition, an initialization process may be performed with the remote device to, for example, provide the remote device with a spatial frame of reference with respect to the spatially modulated signal. The first and second information sequences may both convey data. However, one or both of these sequences may convey various alternative or additional types of information. For example, the first information sequence may convey encrypted data, while the second information sequence provides information for decrypting this data
Abstract:
Apparatus, and an associated method, for a radio communication system having a sending station and a receiving station. The sending station sends data pursuant to a communication service and ultrawide band signals pursuant to a selected time-hopping sequence. An ultrawide band signal detector is positioned at the receiving station. The ultrawide band signal detects the ultrawide band signal transmitted thereto. Correlation is made between the detected ultrawide band signal and a locally-generated replica signal. Correlations therebetween are used to facilitate various receiving station operations, such as equalization operations upon received data, time synchronization of the receiving station to the sending station, and position determination of the positioning of the receiving station.