摘要:
Systems and methods for providing differential motion to wing high lift devices are disclosed. A system in accordance with one embodiment of the invention includes a wing having a leading edge, a trailing edge, a first deployable lift device with a first spanwise location, and a second deployable lift device with a second spanwise location different than the first. The wing system can further include a drive system having a drive link operatively coupleable to both the first and second deployable lift devices, and a control system operatively coupled to the drive system. The control system can have a first configuration for which the drive link is operatively coupled to the first and second deployable lift devices, and activation of at least a portion of the drive link moves the first and second deployable lift devices together. In a second configuration, the drive link is operatively coupled to at least the first deployable lift device and operatively decoupled from the second deployable lift device, so that actuation of at least a portion of the drive link moves the first deployable lift device relative to the second deployable lift device.
摘要:
Systems and methods for providing differential motion to wing high lift devices are disclosed. A system in accordance with one embodiment of the invention includes a wing having a leading edge, a trailing edge, a first deployable lift device with a first spanwise location, and a second deployable lift device with a second spanwise location different than the first. The wing system can further include a drive system having a drive link operatively coupleable to both the first and second deployable lift devices, and a control system operatively coupled to the drive system. The control system can have a first configuration for which the drive link is operatively coupled to the first and second deployable lift devices, and activation of at least a portion of the drive link moves the first and second deployable lift devices together. In a second configuration, the drive link is operatively coupled to at least the first deployable lift device and operatively decoupled from the second deployable lift device, so that actuation of at least a portion of the drive link moves the first deployable lift device relative to the second deployable lift device.
摘要:
Systems and methods for providing differential motion to wing high lift devices are disclosed. A system in accordance with one embodiment of the invention includes a wing having a leading edge, a trailing edge, a first deployable lift device with a first spanwise location, and a second deployable lift device with a second spanwise location different than the first. The wing system can further include a drive system having a drive link operatively coupleable to both the first and second deployable lift devices, and a control system operatively coupled to the drive system. The control system can have a first configuration for which the drive link is operatively coupled to the first and second deployable lift devices, and activation of at least a portion of the drive link moves the first and second deployable lift devices together. In a second configuration, the drive link is operatively coupled to at least the first deployable lift device and operatively decoupled from the second deployable lift device, so that actuation of at least a portion of the drive link moves the first deployable lift device relative to the second deployable lift device.
摘要:
The present invention relates generally to flow regulation in aircraft systems. More particularly, the present invention relates to a flow regulator 100 and a high-lift system 200 for an aircraft incorporating such a flow regulator 100. The flow regulator 100 comprises a fluid input port 102 for receiving a pressurized fluid, a fluid output port 104 for providing fluid having a regulated flow rate, and a regulator valve 106 connected in fluid communication between the fluid input port 102 and the fluid output port 104. The regulator valve 106 is operable to provide regulated fluid at a substantially constant output flow rate to the fluid output port 104. The flow regulator 100 also includes a flow switching mechanism 108 for switching the substantially constant output flow of the flow regulated fluid provided by the regulator valve 106 between a first flow rate and a second flow rate, the first flow rate being less than the second flow rate.
摘要:
The present invention relates generally to flow regulation in aircraft systems. More particularly, the present invention relates to a flow regulator 100 and a high-lift system 200 for an aircraft incorporating such a flow regulator 100. The flow regulator 100 comprises a fluid input port 102 for receiving a pressurised fluid, a fluid output port 104 for providing fluid having a regulated flow rate, and a regulator valve 106 connected in fluid communication between the fluid input port 102 and the fluid output port 104. The regulator valve 106 is operable to provide regulated fluid at a substantially constant output flow rate to the fluid output port 104. The flow regulator 100 also includes a flow switching mechanism 108 for switching the substantially constant output flow of the flow regulated fluid provided by the regulator valve 106 between a first flow rate and a second flow rate, the first flow rate being less than the second flow rate.